首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
A fully developed mixed convection flow between inclined parallel flat plates filled with a porous medium is considered through which there is a constant flow rate and with heat being supplied to the fluid by the same uniform heat flux on each plate. The equations governing this flow are made non-dimensional and are seen to depend on two dimensionless parameters, a mixed convection parameter λ and the Péclet number Pe, as well as the inclination γ of the plates to the horizontal. The velocity and temperature profiles are obtained in terms of λ, Pe and γ when the channel is inclined in an upwards direction as well as for horizontal channels. The limiting cases of small and large λ and small Pe are considered with boundary-layer structures being seen to develop on the plates for large values of λ.  相似文献   

2.
 This article presents the results of laboratory research on heat exchange while heating water in horizontal and vertical tubes with twisted-tape inserts. The scope of the research: 70 ≤ Re ≤ 4000 3.6 ≤ Pr ≤ 5.9 8.6 ≤ Gz ≤ 540 The research was held for three cases: – horizontal experimental tube – vertical experimental tube, the direction of flow according to the free convection vector – vertical experimental tube, the direction of flow not in accordance with the free convection vector For such cases the correlation equation was defined NuT=f(Gz; y), Nu = f(Gz) and the proportion NuT/Nu was analysed. Received on 30 March 2000  相似文献   

3.
Non-Darcy mixed convection in a porous medium from horizontal surfaces with variable surface heat flux of the power-law distribution is analyzed. The entire mixed convection regime is divided into two regions. The first region covers the forced convection dominated regime where the dimensionless parameter ζ f =Ra* x /Pe2 x is found to characterize the effect of buoyancy forces on the forced convection with K U /ν characterizing the effect of inertia resistance. The second region covers the natural convection dominated regime where the dimensionless parameter ζ n =Pe x /Ra*1/2 x is found to characterize the effect of the forced flow on the natural convection, with (K U /ν)Ra*1/2 x /Pe x characterizing the effect of inertia resistance. To obtain the solution that covers the entire mixed convection regime the solution of the first regime is carried out for ζ f =0, the pure forced convection limit, to ζ f =1 and the solution of the second is carried out for ζ n =0, the pure natural convection limit, to ζ n =1. The two solutions meet and match at ζ f n =1, and R * h =G * h . Also a non-Darcy model was used to analyze mixed convection in a porous medium from horizontal surfaces with variable wall temperature of the power-law form. The entire mixed convection regime is divided into two regions. The first region covers the forced convection dominated regime where the dimensionless parameter ξ f =Ra x /Pe x 3/2 is found to measure the buoyancy effects on mixed convection with Da x Pe x /ɛ as the wall effects. The second region covers the natural convection dominated region where ξ n =Pe x /Ra x 2/3 is found to measure the force effects on mixed convection with Da x Ra x 2/3/ɛ as the wall effects. Numerical results for different inertia, wall, variable surface heat flux and variable wall temperature exponents are presented. Received on 8 July 1996  相似文献   

4.
The temperature profile in a circular tube of infinite extent through which a fluid is moving under conditions of small Péclet numbersε is determined by means of an asymptotic analysis inε. The walls of the tube are heated forx>0 and are insulated whenx<0. It is shown that the heated region extends anO(ε −1) distance — relative to the radius of the tube — upstream of the pointx=0, and that convective effects remain important even whenε→0. These results apply to a wider class of problems in which the Péclet number is small.  相似文献   

5.
An analysis has been performed to study the influence of velocity dependent dispersion on transverse heat transfer in mixed convection flow above a horizontal wall of prescribed temperature in a saturated porous medium. The Boussinesq approximation and boundary layer analysis were used to numerically obtain gravity affected temperature and velocity distributions within the frames of Darcy's law and a total thermal diffusivity tensor comprising both of constant coefficient heat conduction and velocity proportional mechanical heat dispersion. Dependending on Pe, the molecular Peclét number basing on the effective thermal diffusivity and the velocity of the oncoming flow, density coupling has distinct influences on heat transfer rates between the wall surface and the porous medium flow region. For small Peclét numbers, when heat conduction is the prevailing mechanism, wall heat fluxes are the higher the larger the density difference between the oncoming and the near wall fluid is. The opposite is true for larger Peclét numbers, when mechanical heat dispersion is the main cause of heat spreading. For Pe tending to infinity these wall heat fluxes approach finite maximum values in the total heat diffusivity model, they grow beyond any limit if only constant coefficient heat conduction is considered. Thus, the inclusion of mechanical heat dispersion effects yields physically more realistic predictions. Received on 18 September 1996  相似文献   

6.
Summary  This paper concentrates on the analysis of the heat transfer between two cocurrent laminar flows in parallel channels. For high values of the Péclet number Pe, a boundary layer arises near the wall separating the streams. Matched asymptotic expansions (MAE) are used to obtain approximate solutions. We consider arbitrary inlet temperatures and derive higher-order corrections of the boundary problem. The separating wall is supposed to be sufficiently thin to neglect the heat conduction in it. Analyticity and adiabatic conditions at the outer walls impose restrictions on the inlet temperatures. It turns out, however, that only the inlet temperatures at the wall separating the two fluids enter the leading-order problem. The Nusselt numbers thus calculated are in the leading order proportional to (Pe/x)1/3, where x is the stream-wise coordinate. An estimate of the thickness of the separating wall to validate the MAE approach is obtained. It is also demonstrated that the MAE analysis is unable to describe the heat exchange of counterflowing fluids. Received 9 June 1999; accepted for publication 17 November 1999  相似文献   

7.
The optimal dimensions of convective-radiating circular fins with variable profile, heat-transfer coefficient and thermal conductivity, as well as internal heat generation are obtained. A profile of the form y=(w/2) [1+(r o/r) n ] is studied, while variation of thermal conductivity is of the form k=k o[1+ɛ((TT )/ (T bT )) m ]. The heat-transfer coefficient is assumed to vary according to a power law with distance from the bore, expressed as h=K[(rr o)/(r er o)]λ. The results for λ=0 to λ=1.9, and −0.4≤ɛ≤0.4, have been expressed by suitable dimensionless parameters. A correlation for the optimal dimensions of a constant and variable profile fins is presented in terms of reduced heat-transfer rate. It is found that a (quadratic) hyperbolic circular fin with n=2 gives an optimum performance. The effect of radiation on the fin performance is found to be considerable for fins operating at higher base temperatures, whereas the effect of variable thermal conductivity on the optimal dimensions is negligible for the variable profile fin. It is also observed, in general, that the optimal fin length and the optimal fin base thickness are greater when compared to constant fin thickness. Received on 22 February 1999  相似文献   

8.
A linear stability analysis is used to study the conditions marking the onset of secondary flow in the form of longitudinal vortices for plane Poiseuille flow of water in the thermal entrance region of a horizontal parallel-plate channel by a numerical method. The water temperature range under consideration is 0∼30°C and the maximum density effect at 4°C is of primary interest. The basic flow solution for temperature includes axial heat conduction effect and the entrance temperature is taken to be uniform at far upstream location jackie=−∞ to allow for the upstream heat penetration through thermal entrance jackie=0. Numerical results for critical Rayleigh number are obtained for Peclet numbers 1, 10, 50 and thermal condition parameters (λ 1, λ 2) in the range of −2.0≤λ 1≤−0.5 and −1.0≤λ 2≤1.4. The analysis is motivated by a desire to determine the free convection effect on freezing or thawing in channel flow of water.  相似文献   

9.
Experimental and numerical studies were carried out to investigate forced convection heat transfer and flow features around the downstream elliptic cylinder in four staggered cylinders in cross flow. The elliptic cylinders examined had an axis ratio (b/c) of 1:2, and they were arranged with zero angle of attack to the upstream flow. The present heat transfer measurements were obtained by heating only the downstream elliptic cylinder (test cylinder) under the condition of constant heat flux. The testing fluid was air and the Reynolds number based on the major axis length (c) was ranged from 4,000 to 45,570. The tested longitudinal spacing ratio (Sx/c) and the transversal spacing ratio (Sy/b) were in the ranges of 1.5 ≤ Sx/c ≤ 4.0 and 1.5 ≤ Sy/b ≤ 4.0, respectively. The air flow pattern and temperature fields around the four staggered elliptic cylinders were predicted by using CFD software package. Also, a flow visualization study was made to show the flow features around the elliptic cylinders. It was observed that Num of the downstream elliptic cylinder in four staggered cylinders was higher than that of three in-line cylinders for all tested spacing ratios and Reynolds numbers except for Re = 4,000. It was clear that, at lower Reynolds number values (Re < 14,100), the average Nusselt number of the downstream elliptic cylinder in three staggered arrangement was higher than that of the downstream cylinder in four staggered arrangement for all tested spacing ratios. On the other hand, at Re > 14,100, the tested elliptic cylinder in four staggered arrangement had the higher values of the average Nusselt number. Moreover, in four staggered arrangement, the maximum average Nusselt number enhancement ratio (average Nusselt number of the tested downstream cylinder/average Nusselt number of a single elliptic cylinder) was found to be about 2.0, and was obtained for spacing ratios of Sx/c = 2.5, Sy/b = 2.5 and at Re = 32,000. Finally, the average Nusselt number of the tested cylinder in four staggered arrangement was correlated in terms of Reynolds number and cylinder spacing ratios.  相似文献   

10.
A continuous surface stretched with velocity u w=u w (x) and having the temperature distribution T w=T w (x) interacts with the viscous fluid in which it is immersed both mechanically and thermally. The thermal interaction is characterized by the surface heat flux q w=q w (x) and the mechanical one by the skin friction τ ww (x). In the whole previous theoretical research concerned with such processes, either (u w and T w) or (u w and q w) have been prescribed as known boundary conditions. The goal of the present paper is to initiate the investigation of the boundary layer flows induced by stretching processes for which either (τ w and T w ) or (τ w and q w) are the prescribed quantities. The case of an isothermal surface stretched with constant skin friction, (τ w=const., T w=const. ≠ T ) is worked out in detail. The corresponding flow and heat transfer characteristics are compared to those obtained for the (well known) case of a uniformly moving isothermal surface (u w=const., T w=const. ≠ T ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号