首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isobaric vapor–liquid equilibria for the ternary system acetone + methanol + lithium nitrate have been measured at 100 kPa using a recirculating still. The addition of lithium nitrate to the solvent mixture produced an important salting-out effect and the azeotrope tended to disappear for small contents of salt. The experimental data sets were fitted with the electrolyte NRTL model and the parameters of the Mock's model were estimated. These parameters were used to predict the ternary vapor–liquid equilibrium which agreed well with the experimental one.  相似文献   

2.
Consistent vapour–liquid equilibrium (VLE) data for the binary system 1-propanol+1-pentanol and for the ternary system water+1-propanol+1-pentanol are reported at 101.3 kPa. An instrument using ultrasound to promote the emulsification of the partly miscible liquid phases have been used in the determination of the vapour–liquid–liquid equilibrium (VLLE). The VLE and VLLE data were correlated using UNIQUAC.  相似文献   

3.
Isothermal vapor–liquid equilibrium (VLE) data for five binary systems ethyl acetate + 3-methyl-1-butanol, ethanol + 3-methyl-1-butanol, ethyl acetate + 2-methyl-1-butanol, ethanol + 2-methyl-1-butanol, ethyl acetate + 2-methyl-1-propanol, involved in the alcoholic distillation have been determined experimentally by headspace gas chromatography. The composition in the liquid phase was corrected with the help of an iterative method by means of a GE model. However, due to the large density difference between the liquid and the vapor, the correction of the liquid phase composition is nearly negligible. All the binary mixtures show positive deviations from Raoult's law. The experimental VLE data are well predicted by using the modified UNIFAC model (Dortmund).  相似文献   

4.
New experimental vapor–liquid equilibrium data of the N2n-pentane system were measured over a wide temperature range from 344.3 to 447.9 K and pressures up to 35 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and vapor–liquid equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure–composition data reported in this work are in good agreement with those determined by others but they are closer to the mixture critical point at each temperature level. The experimental data were modeled with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the modeling showed that the PC-SAFT equation fit the data satisfactorily even at the highest temperatures of study.  相似文献   

5.
2-Methyl pyrazine (2MP) has led to significant interest for its industrial and pharmaceutical uses. The new vapor–liquid equilibria (VLE) at 353.15 K and excess molar volumes (VE) at 298.15 K over the whole mole fraction range for seven binaries (water, n-hexane, cyclohexane, n-heptane, methylcyclopentane (MCP), methylcyclohexane (MCH) and ethyl acetate (EA) with 2MP) have been measured. VLE were measured by using headspace gas chromatography and VE were determined using precision density meter. The water+2MP system has only the minimum boiling azeotrope. The experimental VLE and VE data were well correlated in terms of common gE models and Redlich–Kister equation, respectively.  相似文献   

6.
In the present study, an activity coefficient model, based on the concept of local volume fractions and the Gibbs–Helmholtz relation, has been developed. Some modifications were made from Tan–Wilson model (1987) and TK–Wilson model (1975) to represent activity coefficients in mixed solvent–electrolyte systems. The proposed model contains two groups of binary interaction parameters. One group for solvent–solvent interaction parameters corresponds to that given by the TK–Wilson model (1975) in salt-free systems. The other group of salt–solvent interaction parameters can be calculated either from vapor pressure or bubble temperature data in binary salt–solvent systems. It is shown that the present model can also be used to describe liquid–liquid equilibria. No ternary parameter is required to predict the salt effects on the vapor–liquid equilibria (VLE) of mixed solvent systems. By examining 643 sets of VLE data, the calculated results show that the prediction by the present model is as good as that by the Tan–Wilson model (1987), with an overall mean deviation of vapor phase composition of 1.76% and that of the bubble temperature of 0.74 K.  相似文献   

7.
Consistent isobaric vapour–liquid equilibrium data have been measured for 2-butanone + ethanol, 2-butanone + 1-propanol, and 2-butanone + 2-propanol at 20 and 101.3 kPa. The binary systems 2-butanone + ethanol and 2-butanone + 2-propanol present a minimum boiling azeotrope at both pressures, and show that the azeotropic compositions is strongly dependent on pressure. The equilibrium data were correlated using the Wilson, NRTL, and UNIQUAC models for which the parameters are reported.  相似文献   

8.
Reverse nonequilibrium molecular dynamics in the canonical ensemble and coupled–decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to predict the low-shear rate Newtonian viscosities and vapor–liquid coexistence curves for 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,2,4-butanetriol modeled with the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field. Comparison with available experimental data demonstrates that the TraPPE-UA force field yields very good predictions of the viscosities and vapor–liquid coexistence curves. A detailed analysis of liquid structure and hydrogen bonding is provided.  相似文献   

9.
Liquid–liquid phase equilibria (LLE) for the system of water/1,4-dioxane/dihydromyrene (DHM) were investigated experimentally at 343.15, 348.15, 353.15, 358.15 K and atmospheric pressure. The reliability of the experimental tie-lines has been confirmed by using Othmer–Tobias correlation. The NRTL and improved UNIQUAC models were used to correlate the phase equilibria in the system using the interaction parameters determined from experimental data. The root mean square deviation (RMSD) between the observed and calculated mole percents was 0.58%. It is found that NRTL and improved UNIQUAC used for LLE could provide a good correlation.  相似文献   

10.
Liquid–liquid equilibria (LLE) of the multicomponent system water + ethanol + a synthetic reformate (composed of benzene, n-hexane, 2,2,4-trimethylpentane, and cyclohexane) was studied at atmospheric pressure and at 283.15 and 313.15 K. The mutual reformate–water solubility with addition of anhydrous ethanol was investigated. Different quantities of water were added to the blends in order to have a wide water composition spectrum, at each temperature. We conclude from our experimental results, that this multicomponent system presents a very small water tolerance and that phase separation could result a considerable loss of ethanol that is drawn into the aqueous phase. The results were also used to analyse the applicability of the UNIFAC group contribution method and the UNIQUAC model. Both models fit the experimental data with similar low average root mean square deviations (rsmd ≤ 2.05%) yielding a satisfactory equilibrium prediction for the multicomponent system, although the predicted ethanol (rsmd ≤ 4.6%) compositions are not very good. The binary interaction parameters needed for the UNIQUAC model were obtained from the UNIFAC method.  相似文献   

11.
Isobaric vapor–liquid equilibrium data have been experimentally determined at 101.3 kPa for the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate. No azeotrope was found in any of the systems. All the experimental data reported were thermodynamically consistent according to the point-to-point method of Fredenslund. The activity coefficients were correlated with the NRTL and UNIQUAC liquid-phase equations and the corresponding binary interaction parameters are reported. The densities and derived excess volumes for the three mixtures are also reported at 298.15 K.  相似文献   

12.
Isobaric vapor–liquid equilibrium data (VLE) at 101.325 kPa have been determined in the miscible region for 1,1-dimethylethoxy-butane (BTBE) + methanol + water and 1,1-dimethylethoxy-butane (BTBE) + ethanol + water ternary systems, and for their constituent binary systems, methanol + BTBE and ethanol + BTBE. Both binary systems show an azeotrope at the minimum boiling point. In the ternary system BTBE + methanol + water no azeotrope has been found, however, the system BTBE + ethanol + water might form a ternary azeotrope near the top of the binodal. Thermodynamically consistent VLE data have been satisfactorily correlated using the UNIQUAC, NRTL and Wilson equations for the activity coefficient of the liquid phase. Temperature and vapor phase compositions have been compared with those calculated by the group-contribution methods of prediction ASOG, and the original and modified UNIFAC. Predicted values are not in good agreement with experimental values.  相似文献   

13.
The liquid–liquid equilibrium of water/1-propanol/methyl ethyl ketone (MEK) at 25°C was significantly modified by the presence of dissolved potassium chloride. Water is salted out of the organic phase while MEK is more preferentially salted out of the aqueous phase than 1-propanol. These results in considerable enlargement of the two-phase region and enhancement of the extractive efficiency of MEK for the separation of 1-propanol from its aqueous mixture. Good correlation of the liquid–liquid equilibria (LLE) of the system in the presence of potassium chloride up to saturation was obtained with Tan’s modified NRTL phase model for multicomponent solute–solvent mixtures with the solute–solvent interaction parameters expressed as a third-order polynomial function in salt concentration. Similar to the observation reported for vapour–liquid equilibrium (VLE) of solvent–solute mixtures, salting-in and salting-out of the solvent components from the respective phases can be predicted according to the relative solute–solvent interaction parameters of the solvent components in the two phases.  相似文献   

14.
Vapor pressure of methyl glycolate and the binary isothermal vapor–liquid equilibrium of ethylene glycol and methyl glycolate were measured by using static method. The experimental data was correlated with the Wilson and NRTL activity coefficient models. Good agreement between the experimental data and model is achieved.  相似文献   

15.
Isothermal vapour–liquid equilibria (VLE), solid–liquid equilibria and excess enthalpies have been measured for the systems cyclohexanone + cyclohexanol and 2-octanone + 1-hexanol. Additionally in this paper binary azeotropic data at different pressures for 1-pentanol + 2-heptanone and 1-hexanol + 2-octanone have been determined with the help of a wire band column. Furthermore activity coefficients at infinite dilution for methanol, ethanol, 1-butanol and 1-propanol in 2-octanone at different temperatures have been measured with the help of the dilutor technique. These data together with literature data for alcohol–ketone systems were used to fit temperature-dependent group interaction parameters for the group contribution method modified UNIFAC (Dortmund) and the group contribution equation of state VTPR.  相似文献   

16.
Methyl tert-butyl ether (MTBE) is recently widely used in the chemical and petrochemical industry as a non-polluting octane booster for gasoline and as an organic solvent. The isobaric or isothermal vapor–liquid equilibria (VLE) were determined directly for MTBE+C1–C4 alcohols. The excess enthalpy (HE) for butane+MTBE or isobutene+MTBE and excess volume (VE) for MTBE+C3–C4 alcohols were also determined. Besides, the infinite dilute activity coefficient, partial molar excess enthalpies and volumes at infinite dilution (γ, HE,∞, VE,∞) were calculated from measured data. Each experimental data were correlated with various gE models or empirical polynomial.  相似文献   

17.
《Fluid Phase Equilibria》2005,231(1):99-108
Isobaric vapor–liquid equilibrium (VLE) data were determined at the pressure of 101.3 kPa for binary and ternary systems composed of acetone, ethanol, and 2,2,4-trimethylpentane (isooctane). Minimum boiling azeotropes were found in the acetone + 2,2,4-trimethylpentane and ethanol + 2,2,4-trimethylpentane systems. Azeotropic behavior was not found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated as function of the mole fraction using the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted parameters were used to predict the ternary vapor–liquid equilibrium. The Wilson model appears to yield the best prediction in boiling temperatures.  相似文献   

18.
Liquid–liquid equilibria data of the quaternary system methyl isobutyl ketone (MIBK)–water–phenol–hydroquinone were measured at 25 °C under atmosphere pressure. The experimental data were correlated with the UNIQUAC and NRTL activity coefficient models on the base of the fixed binary interaction parameters that were obtained from two sub-ternary systems MIBK–water–phenol and MIBK–water–hydroquinone. The root mean square deviations (RMSD) show that the regressed results for the quaternary system were in good agreement with the experimental data for both UNIQUAC and NRTL models. The comparison between experimental and calculated distribution coefficient values of phenol and hydroquinone shows that a relative deviation of less than 5% is obtained.  相似文献   

19.
Isobaric (vapour + liquid) equilibrium data have been measured for the (toluene + sulfolane), (ethylbenzene + sulfolane), and (isopropylbenzene + sulfolane) binary systems with a modified Rose-Williams still at 101.33 kPa. The experimental data of binary systems were well correlated by the non-random two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models for the liquid phase. All the experimental results passed the thermodynamic consistency test by the Herington method. Furthermore, the model UNIFAC (Do) group contribution method was used. Sulfolane is treated as a group (TMS), the new group interaction parameters for CH2–TMS, ACH–TMS and ACCH2–TMS were regressed from the VLE data of (toluene + sulfolane) and (ethylbenzene + sulfolane) binary systems. Then these group interaction parameters were used to estimate phase equilibrium data of the (isopropylbenzene + sulfolane) binary system. The results showed that the estimated data were in good agreement with the experimental values. The maximum and average absolute deviations of the temperature were 4.50 K and 2.39 K, respectively. The maximum and average absolute deviations for the vapour phase compositions of isopropylbenzene were 0.0237 and 0.0137, respectively.  相似文献   

20.
Isothermal vapor–liquid equilibrium (VLE) data for diethylamine(1)+acetone(2) and diethylamine(1)+acetonitrile(2) binary systems were obtained at 323.15 K by dynamic method. Excess molar volumes at 298.15 K for these systems were measured by a dilution dilatometer. VLE data have been checked for thermodynamic consistency and correlated by Wilson, NRTL and UNIQUAC equations. UNIFAC group interaction parameters for CH2NH---CH3CO and CH2NH---CH3CN pairs are also obtained from the experimental VLE data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号