首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electronics and construction for an end-column ultramicroelectrode (3–10 μm) detection system that permits the use of medium-sized capillaries (25 μm I.D.) without appreciable effects from the potential field at the end of the capillary. Normal peak-to-peak noise over 10 s was 0.01–0.1 pA. The background noise observed for a 200 × μm carbon-fiber electrode placed either 180 μm within a 25-μm capillary or at a point 500 μm away from the capillary was essentially the same. A study of detector response as a function of the position of the electrode has shown that accurate location of the electrode is important for sensitive and reproducible detection. These studies also showed that differences between the density of the electrolyte existing the capillary and the electrolyte in the detection cell could cause anomalous electrode response depending on the location of the electrode relative to the end of the capillary. Application of a carbon fiber or an Hg film electrode gave detection limits (twice the peak-to-peak noise over 10 s) of 2 · 10−8 mol/l for Pb2+, 1 · 10− 5 mol/l for NO2 and 5 · 10−10 mol/l for catechol.  相似文献   

2.
A number of experimental parameters have been optimized for the separation of 26 metal ions, including alkali, alkaline earth, transition and lanthanide metal ions. Experimental parameters that were evaluated included nature of indirect-detection reagent, pH of electrolyte, concentration of complexing agent and nature of the surface of the capillary; unbonded and C1 and C18 bonded phases were studied. In addition the effect of internal diameter on linearity and signal-to-noise ratio was examined, and separation efficiency was determined for a variety of experimental conditions. Detection limits (signal-to-noise RATIO = 3) were ca. 1 μg/ml for the lanthanides, ca. 0.6 μg/ml for transition and alkaline earth ions and ca. 0.1–0.8 μg/ml for alkali metal ions. The average relative standard deviations of were 3.7, 5.1 and 2.5% on unbonded, C1 and C18 capillaries, respectively. Whereas conventional regression analysis suggested that the calibration curves were linear over the range of 1·10−5 to 4·10−4 mol/l, sensitivity plots showed that the results were actually linear to within 6% only over the range of 2.5·10−5 to 4·10−4 mol/l.  相似文献   

3.
A combination of the electrophoretically mediated microanalysis methodology with a partial filling technique was applied for the inhibition study of bovine liver rhodanese by 2-oxoglutarate. In this set-up, part of the capillary is filled with the best buffer for the enzymatic reaction, while the rest of the capillary is filled with the optimal background electrolyte for separation of substrates and products. The estimated value of KI for 2-oxoglutarate was 3.62·10−4±1.43·10−4 M with respect to cyanide and 1.40·10−3±1.60·10−4 M with respect to thiosulfate. In addition, the type of inhibition was also evaluated. The findings of 2-oxoglutarate as the competitive inhibitor with respect to cyanide and as the uncompetitive inhibitor with respect to thiosulfate are in accordance with previous literature data.  相似文献   

4.
The separation of dansylated amino acids and underivatized amino acids in non-aqueous electrolytes was evaluated with direct and indirect UV detection. Different migration orders were achieved for dansylated amino acids in methanol compared to aqueous electrolyte systems. A reversed migration order was observed for some dansylated amino acids. Separation selectivity was different under acidic and basic conditions and was also a function of the solvation properties of the solvent. Underivatized amino acids were separated in basic and acidic electrolytes in methanol; different separation selectivities and, for some amino acids, a reversed migration order were also observed in these electrolyte systems. Analytical merits of the separation of both derivatized and underivatized amino acids were briefly evaluated; detection limits for dansylated amino acids were in the range of 2·10−7–4·10−7 mol/l and, for underivatized amino acids, were 2·10−6–4·10−5 mol/l.  相似文献   

5.
Koh T  Miura Y  Katoh M 《Talanta》1977,24(12):759-761
Lanthanum(III) has been found to catalyse the reaction of thiosulphate with cyanide. The effects of pH, reaction time and temperature, amount of cyanide and lanthanum, and order of addition of reagents have been investigated. Temperature has little effect in the range 10–30°, but at both 35° and 40° the rate is noticeably faster. Reaction is complete at room temperature in 1.5 hr at pH 9.3–9.6, and in 3 hr at pH 9.1–9.6. The method can be applied to the determination of 1.0 × 10−5−6.0 × 10−4M thiosulphate, with a relative standard deviation of 0.3% for 4 × 10−4M thiosulphate.  相似文献   

6.
Application of capillary isotachophoresis (CITP) for the analysis of water extracts of the dust samples collected in different periods in air-filtration devices in Prague car traffic tunnels and in Parisian metro station is presented. The extracts were analyzed in cationic mode with a leading electrolyte (LE) of 10 mM KOH, 25 mM acetic acid, pH 4.4, and a terminating electrolyte (TE) of 10 mM β-alanine, adjusted to pH 4.4 with acetic acid, and in anionic mode with LE 10 mM HCl, 20 mM histidine, pH 5.8 and TE 10 mM 2-(N-morpholino)ethanesulphonic acid, pH 3.7. Extracted amounts of UV-absorbing substances, including pollen allergens and organic pollutants, the number of the found components and concentrations of some inorganic ions (e.g. Cl, K+, Na+, Ca2+) in the dust samples were determined. It was found that the extracted amounts of anionic components and their number were much higher than those of cationic components. Significant differences have been found in the analyses of the extracts of different origin. Much more material and more components were present in the extracts of samples from the pollen-rich period than from the pollen-free period, especially in anionic CITP mode.  相似文献   

7.
Saran L  Cavalheiro E  Neves EA 《Talanta》1995,42(12):2027-2032
The highly neutralized ethylenediaminetetraacetate (EDTA) titrant (95–99% as Y4− anion) precipitates with Ag+ cations to form the Ag4Y species, in aqueous medium, which is well characterized from conductometric titration, thermal analysis and potentiometric titration of the silver content of the solid. The precipitate dissolves in excess Y4− to form a complex, AgY3−. Equilibrium studies at 25°C and ionic strength 0.50 M (NaNO3) have shown from solubility and potentiometric measurements that the formation constant (95% confidence level) β1 = (1.93 ± 0.07) × 105 M−1 and the solubility products are KS0 = [Ag +]4[Y4−] = (9.0 ± 0.4) × 10−18 M5 and KS1 = [Ag +]3[AgY3−] = (1.74 ± 0.08) × 10−12 M4. The presence of Na+, rather than ionic strength, markedly affects the equilibrium; the data at ionic strength 0.10 M are: β1 = (1.19 ± 0.03) × 106 M−1, KS0 = (1.6 ± 0.4) × 10−19 M5 and KS1 = (1.9 ± 0.5) × 10−13 M4; at ionic strength tending to zero; β1 = (1.82 ± 0.05) × 107 M−1, KS0 = (2.6 ± 0.8) × 10−22 M5 and KS1 = (5 ± 1) × 10−15 M4. The intrinsic solubility is 2.03 mM silver (I) in 0.50 M NaNO3. Well-defined potentiometric titration curves can be taken in the range 1–2 mM with the Ag indicator electrode. Thermal analysis revealed from differential scanning calorimetry a sharp exothermic peak at 142°C; thermal gravimetry/differential thermal gravimetry has shown mass loss due to silver formation and a brown residue, a water-soluble polymeric acid (decomposition range 135–157°C), tending to pure silver at 600°C, consistent with the original Ag4Y salt.  相似文献   

8.
Zhou CL  Lu Y  Li XL  Luo CN  Zhang ZW  You JM 《Talanta》1998,46(6):1531-1536
A new method is described for the determination of antimony based on the cathodic adsorptive stripping of Sb(III) complexed with 2′,3,4′,5,7-pentahydroxyflavone(morin) at a static mercury drop electrode (SMDE). The reduction current of the adsorbed antimony complex was measured by 1.5th-order derivative linear-sweep adsorption voltammetry. The peak potential is at −0.51 V (vs. SCE). The effects of various parameters on the response are discussed. The optimized analytical conditions were found to be: supporting electrolyte, chloroacetic acid (0.04 mol/l, pH 2.3); concentration of morin, 5×10−6 mol/l; accumulation potential, −0.25 V (vs. SCE); scan rate, 100 mV/s. The limit of detection and the linear range were 7×10−10 mol/l and 1.0×10−93.0×10−7 mol/l Sb(III) for a 2-min accumulation time, respectively. This method has been applied to the determination of Sb(III) in steel and brass samples and satisfactory results were obtained. The adsorptive voltammetric characteristics and composition of the Sb(III)–morin complex were studied.  相似文献   

9.
Hassan SS  Marzouk SA  Sayour HE 《Talanta》2003,59(6):1237-1244
A novel polymeric membrane sensor sensitive to (4-sulphophenylazo-)1-naphthylamine (SPAN) based on the use of tris(bathophenanthroline) Ni(II)–SPAN ion pair as an ion exchanger in plasticised PVC membrane is described. The sensor exhibits a linear calibration plot with near-Nernstian anionic slope of −55.0±0.3 mV log[SPAN]−1 over the concentration range 10−6–10−2 mol l−1 at pH 7. The sensor shows working range over the pH 6–8, response time of 20 s for 10−5 mol l−1 and operational lifetime of 8 weeks. The sensor is used for quantification of micro quantities of nitrite ion by a prior conversion into the more lipophilic SPAN ion, which is measured with adequate sensitivity, and high selectivity using SPAN sensor. Validation of the method according to the quality assurance standards shows good performance characteristics. The sensor is satisfactory utilised for potentiometric determination of nitrite ion in wastewater samples and meat products. The results are favourably compared with data obtained using the standard spectrophotometric procedure involving the same reaction.  相似文献   

10.
Inam R  Somer G 《Talanta》1998,46(6):1347-1355
The polarographic reduction of lead in the presence of selenite gives rise to an additional peak corresponding to the reduction of lead (Pb) on adsorbed selenium (Se) on mercury at −0.33 V. The selenium and lead content can be determined using this peak by the addition of a known amount of one of these ions first and then the second ion. The linear domain range of lead is 5.0×10−7–2.0×10−5 M and for selenium 5.0×10−7–1.0×10−5 M. Using this method 4.90×10−7 M Se(IV) and 1.47×10−6 M Pb(II) in a synthetic sample could be determined with a relative error of +2.0% and 1.8%, respectively (n=4). A recovery test after acid digestion for a synthetic sample was 97% for selenium and 96.5% for lead. The method was applied to 1 ml of digested blood, and 328±23 μg l−1 Se(IV) and 850±62 μg l−1 Pb(II) could be determined with a 90% (n=5) confidence interval.  相似文献   

11.
UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm. σR = (2.6 ± 0.4) × 10−18 cm2 molecule−1 and σRO2 = (4.1 ± 0.6) × 10−18 cm2 molecule−1 (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 ± 1.1) × 10−11 cm3 molecule−1 s−1. The rate constants for reaction of the alkyl radicals with molecular oxygen and the alkylperoxy radicals with NO and NO2 are (9.1 ± 1.5) × 10−13, (4.3 ± 1.6) × 10−12 and (1.2 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule.  相似文献   

12.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

13.
The fluorescence of single crystals of β-9,10-dichloroanthracene at 4.2 K consists solely of excimer emission (τ = 95 ± 5 ns). The absence of monomenc emission shows that excimer formation in this crystal is not a thermally activated process. This result is confirmed by excimer-excimer annihilation studies (γ(4.2 K) = 6 × 10−13, γ(298K) = 3 × 10−12 cm3 s−1).  相似文献   

14.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

15.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

16.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

17.
The anodization of mercury microelectrodes was investigated in synthetic samples containing several strong and weak electrolytes at different concentrations. In particular, the effects on mercury anodization due to the presence of NaOH, HClO4, NaCl, NaI, NaF, Na2SO4, NaHCO3, Na2CO3, tartaric and citric acids, were studied in solutions containing either each species or mixtures of them, and without addition of supporting electrolyte. Some of the electrode processes studied led to linear calibration plots e.g. 1 × 10−5 − 1 × 10−4M Cl, 1 × 10−6 − 1 × 10−5M I, 5 × 10−4 − 3 × 10−3M SO42−, 5 × 10−4 − 2 × 10−2M HCO3, with typical correlation coefficients of 0.998–0.999. The anodization of mercury microelectrodes was also investigated directly in wine, rain, tap and mineral water, without pretreatment and without addition of supporting electrolyte. In the real samples only the ions Cl and HCO3 could be quantified, and the values found were in agreement, within 3–5%, with the reference values obtained by using Italian standard methods for food.  相似文献   

18.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

19.
Norfloxacin, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (NORH), reacts with aluminium(III) ion forming the strongly fluorescent complex [Al(HNOR)]3+, in slightly acidic medium. The complex shows maximum emission at 440 nm with excitation at 320 nm. The fluorescence intensity is enhanced upon addition of 0.5% sodium dodecylsulphate. Fluorescence properties of the Al-NOR complex were used for the direct determination of trace amounts of NOR in serum. The linear dependence of fluorescence intensity on NOR concentration, at a NOR to Al concentration ratio of 1:10, was found in the concentration range 0.001–2 μg/ml NOR with a detection limit of 0.1 ng/ml. The ability of aluminium (III) ion to form complexes with NOR was investigated by titrations in 0.1 M LiCl medium, using a glass electrode, at 298 K, in the concentration range: 2 × 10−4 ≤ [Al] ≤ 8 × 10−4; 5 × 10−4 ≤ [NOR] ≤ 9 × 10−4 mol/dm3; 2.8 ≤ pH ≤ 8.3. The experimental data were explained by the following complexes and their respective stability constants, log(β ± σ): [Al(HNOR)], (14.60 ± 0.05); [Al(NOR)], (8.83 ± 0.08); [A1(OH)3(NOR)], (−14.9 ± 0.1), as well as several pure hydrolytic complexes of A13+. The structure of the [Al(HNOR)] complex is discussed, with respect to its fluorescence properties.  相似文献   

20.
Hassan SS  Ali MM  Attawiya AM 《Talanta》2001,54(6):1153-1161
Two novel uranyl PVC matrix membrane sensors responsive to uranyl ion are described. The first sensor incorporates tris(2-ethylhexyl)phosphate (TEHP) as both electroactive material and plasticizer and sodium tetraphenylborate (NaTPB) as an ion discriminator. The sensor displays a rapid and linear response for UO22+ ions over the concentration range 1×10−1–2×10−5 mol l−1 UO22+ with a cationic slope of 25.0±0.2 mV decade−1. The working pH range is 2.8–3.6 and the life span is 4 weeks. The second sensor contains O-(1,2-dihydro-2-oxo-1-pyridyl)-N,N,N′,N′-bis(tetra-methylene)uronium hexafluorophosphate (TPTU) as a sensing material, sodium tetraphenylborate as an ion discriminator and dioctyl phenylphosphonate (DOPP) as a plasticizer. Linear and stable response for 1×10−1–5×10−5 mol l−1 UO22+ with near-Nernstian slope of 27.5±0.2 mV decade−1 are obtained. The working pH range is 2.5–3.5 and the life span of the sensor is 6 weeks. Interference from many inorganic cations is negligible for both sensors. However, interference caused by some ions (e.g. Th4+, Cu2+, Fe3+) is eliminated by a prior ion exchange or solvent extraction step. Direct potentiometric determination of as little as 5 μg ml−1 uranium in aqueous solutions shows an average recovery of 97.2±1.3%. Application for the determination of uranium at levels of 0.01–1 wt.% in naturally occurring and certified ores gives results with good correlation with data obtained by X-ray fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号