首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and selective GC-MS method was optimised for the simultaneous analysis of fatty acids, phosphoethanolamine, phosphoglycerol and phosphoserine, which comprise the polar headgroups of phospholipids. Enzymatic hydrolysis was used for sample preparation to selectively release fatty acids and prevent cleavage of the phosphoester bonds of the polar headgroups. A two-step consecutive derivatisation of the fatty acids and polar headgroups was applied to enable the simultaneous analysis of the selected analytes. The method was tested on samples of cell membrane phospholipids of Bacillus subtilis, a microbe with a broad spectrum of fatty acids. This approach can accelerate and simplify biotechnological research and quality control. The experimental conditions were optimised using a chemometric approach denoted as experimental design.  相似文献   

2.
Anionic phospholipids phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) were examined for their effect on 1-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine (POPC)-containing liposomes used as coating material in capillary electrochromatography. Liposome solvent was N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer at pH 7.4 with and without 3 mM of CaCl2. The background electrolyte solution was HEPES buffer at pH 7.4. The net charge, size, and short-term stability of the liposomes were measured with a Zetasizer. Results showed that calcium interacts with all liposomes but most strongly with POPC/PA. The relative migration times, retention factors, and resolution of the model analytes (one cationic, three uncharged ions, and one anionic) were studied. All liposomes successfully coated the silica capillary. Without calcium the strongest interaction and best separation of the analytes were with the POPC/PI and POPC/PS coatings, while interactions with the POPC/PA coating were weak. Calcium enhanced the interactions of the model analytes with all coatings, and the interactions were then strongest with the POPC/PA coating. In the presence of calcium there appears to be a slight reorganization of the coating with increasing number of runs. Our results indicate strong interactions between calcium and the phosphate groups in phospholipids and demonstrate the significant role of the phospholipid polar head group in phospholipid coatings on silica surfaces.  相似文献   

3.
The quantification of phospholipid classes and the determination of their molecular structures are crucial in physiological and medical studies. This paper's target analytes are cell membrane phospholipids, which play an important role in the seasonal acclimation processes of poikilothermic organisms. We introduce a set of simple and cost‐effective analytical methods that enable efficient characterization and quantification of particular phospholipid classes and the identification and relative distribution of the individual phospholipid species. The analytical approach involves solid‐phase extraction and high‐performance thin‐layer chromatography, which facilitate the separation of particular lipid classes. The obtained fractions are further transesterified to fatty acid methyl esters and subjected to gas chromatography coupled to flame ionization detection, which enables the determination of the position of double bonds. Phospholipid species separation is achieved by high‐performance liquid chromatography with mass spectrometry, which gives information about the headgroup moiety and attached fatty acids. The total content of each phospholipids class is assessed by phosphorus determination by UV spectrophotometry. The simultaneous analysis of phosphorus, fatty acid residues, and phospholipid species provides detailed information about phospholipid composition. Evaluation of these coupled methods was achieved by application to an insect model, Pyrrhocoris apterus. High correlation was observed between fatty acid compositions as determined by gas chromatography and high‐performance liquid chromatography analysis.  相似文献   

4.
In this work, a high-performance liquid chromatography with evaporative light scattering detection method has been developed and applied for quantification of the polar content of the lipid fraction in milk samples of different origin. From a chromatographic stand-point, a 4.6-mm I.D. hydrophilic interaction liquid chromatography column was employed to attain a baseline separation of major phospholipid classes contained in the various milk samples tested. Quantitative analysis was performed by the external calibration method using reference material solutions in the 5–100 mg/L concentration range. Analytical recoveries ranging from 57 to 100 %, and repeatability data lower than 8.04 % were obtained on a skimmed cow’s milk sample. The crude cow milk was the most abundant (0.04 %) in phospholipids and donkey milk was the poorest (0.004 %). Quantitative differences were determined in the phospholipid content of the milk samples tested. Finally, characterization of phospholipid profile and fatty acid composition of the different samples was carried out by an ion trap-time of flight mass spectrometer and gas chromatography coupled to flame ionization and mass spectrometry detection. A thorough screening of the polar lipid composition of milk samples of different origin is here outlined, for the first time.  相似文献   

5.
Lima LR  Synovec RE 《Talanta》1994,41(4):581-588
Molecular species of phosphatidylcholine, phosphatidylethanolamine and phosphatadic acid were resolved by isocratic reversed phase high performance liquid chromatography (HPLC) using mobile phases of methanol-isopropanol containing para-toluenesulfonic acid (p-tsa). Separation by both non-polar fatty acid chain length and by polar head group functionality was achieved concurrently upon a commercially available octadecylsilane (C18) column endcapped with trimethylsilane (C1) groups. Using a mobile phase of 97.5:2.5 methanol:isopropanol with 7OmMpara-toluenesulfonic acid (p-tsa) at a pH of approximately 1, twelve phospholipid species comprised of four tail group classes (dilauroyl-,dimyristoyl-, dipamitoyl- and distearoyl-) and three head group speciations (phosphatidylcholine, phosphatidylethanolamine and phosphatadic acid) were separated. The column was then exposed to the acidic mobile phase for 48 hours continuously during which the bound phase underwent severe acid-induced hydrolysis, after which the separation of the twelve analytes resulted in the separation of the phospholipid species by non-polar tail group alone. The experimental results are discussed in terms of potential separation mechanisms including dependency of the separation on adsorption of the counter ion into the stationary phase, residual acidic silanol group interactions, and potential interactions of the surface active phospholipids with C1 groups.  相似文献   

6.
A new isocratic separation method was developed for separation of phospholipid (PL) classes based on a silica hydrophilic interaction liquid chromatography (HILIC) column with electrospray ionization (ESI) mass spectrometric detection. Although HILIC is typically used for polar compounds, also amphiphilic molecules like phospholipids can be separated very well. Compared to normal-phase (NP) chromatography, which is usually used for PL class separation, HILIC has the advantage to use on-line ESI-MS detection because its eluents are ESI compatible. Furthermore, this HILIC method is isocratic and hence less time consuming than most (gradient) NP HPLC methods. A chromatographic baseline separation of a standard mixture containing phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), sphingomyelin (SM) and lysophosphatidylcholine (LPC) was achieved within a total run time of 17 min using a mobile phase consisting of acetonitrile, methanol and ammonium acetate 10 mM. The new method was subsequently tested on phospholipid fractions of a body fluid (human blood plasma) and a tissue extract (swine brain) whereby it achieved nearly the same baseline separation of the PL classes. The detected classes in both cases were PE, PC, SM and LPC.  相似文献   

7.
Both the MN-glycoprotein from human erythrocytes and the hydrophobic fragment from the protein isolated with trypsin treatment, T(is), have been recombined with egg phosphatidylcholine in bilayers at various phospholipid/protein ratios. In order to investigate the effect of the protein on the phospholipid headgroups, 31P nuclear magnetic resonance spectra were obtained with the MN-glycoprotein recombined with egg phosphatidylcholine, which revealed two classes of phospholipid environments, one immobilized and one not immobilized. Electron spin resonance (ESR) of fatty acid methyl ester spin labels provided supporting evidence. Computer analysis of the ESR spectra indicate that 4-5 moles of phospholipid are immobilized per mole of protein over a wide range of lipid-to-protein ratios. The immobilization of the phospholipids appears mediated by both the polar headgroups and the hydrocarbon tails of the phospholipid.  相似文献   

8.
Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was ∼90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPCeq) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively.  相似文献   

9.
The chromatographic conditions for the separation of a complex set of flavonoids (aglycones and glycosides) by micellar liquid chromatography with spectrophotometric detection were optimized. A good separation for all analytes was obtained and satisfactory peak shapes were achieved by isocratic elution with Ultrasphere ODS column (250 mm × 4.6 mm, 5 μm). The optimal mobile phase range for flavonoids separation is: SDS concentration between 0.014 and 0.018 mol L?1 and 1-propanol volume fraction between 2.2 and 4.5% (v/v) in a diluted (1:5) phosphate buffer solution pH 6.86. The flavonoids (robinin, rutin, hyperoside, quercitrin, liquroside, luteolin-7O-glucoside, apigenin-7O-glucoside, isosalipurposide, myricetin, fisetin, luteolin, apigenin, quercetin and caempferol) were successfully separated within 40 min with isocratic elution. The developed method is an alternative to reversed-phase LC in the assay of flavonoids in plants, plant extracts and plant extract containing drugs.  相似文献   

10.
This work reports an efficient and universal SPE method developed for separation and identification of phospholipids derived from complex biological samples. For the separation step, sequential combination of silica gel‐aminopropyl‐silica gel SPE cartridges is applied. This setup enables separation of phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylserine, cardiolipin, and sphingomyelin into four fractions according to the polarity of their headgroups. Sample acquisition of the SPE fractions is performed by a high‐resolution LC‐MS system consisting of a hybrid linear IT Fourier transform ion cyclotron resonance mass spectrometer coupled to RP‐HPLC. The unequivocal advantage of our SPE sample preparation setup is avoidance of analyte peak overlapping in the determination step done by RP‐HPLC. Overlapping phospholipid signals would otherwise exert adverse ion suppression effects. An additional benefit of this method is the elimination of polar and nonpolar (e.g. neutral lipids) contaminants from the phospholipid fractions, which highly reduces contamination of the LC‐MS system. The method was validated with fermentation samples of organic waste, where 78 distinct phospholipid and sphingomyelin species belonging to six lipid classes were successfully identified.  相似文献   

11.
A high-performance liquid chromatographic method for chiral separation of ketoprofen racemate was developed. (R)- and (S)-ketoprofen enantiomers were separated on a LiChrosorb NH2 column (250 mm × 4.6 mm, i.d 5 µm) at 20 °C, using 2-propanol/potassium dihydrogen phosphate buffer (pH 6.0, 0.05 M) (50:50 v/v). Containing vancomycin as the mobile phase, at a flow rate of 0.8 ml min?1 and detection wavelength of UV, the detector was set at 310 nm. Under these conditions, ketoprofen enantiomers could be separated with a selectivity factor (α) of 2.172 and a resolution (Rs) of 4.78 using extremely low concentrations of the vancomycin chiral additive.  相似文献   

12.
《Analytical letters》2012,45(15):2861-2875
Abstract

A method based on capillary electrophoresis with electrochemical detection (CE‐ED) has been developed for the first time for the separation and determination of isovanillic acid, vanillic acid, quercetin, rosmarinic acid, caffeic acid, and protocatechuic acid in Origanum vulgare L. and its medicinal preparations. The effects of working electrode potential, pH level, concentration of running buffer, separation voltage, and injection time on CE‐ED were investigated. Under the optimum conditions, the analytes could be separated in a 50 mmol L?1 borate buffer (pH 8.7) within 21 min. A 300‐µm diameter carbon disk electrode has a good response at +0.95 V (vs. SCE) for all analytes. The response was linear over three orders of magnitude with detection limits (S/N=3) ranging from 4×10?8 g mL?1 to 2×10?7 g mL?1 for the analytes. The method has been successfully applied to the analysis of real sample, with satisfactory results.  相似文献   

13.
This study establishes a method, using different buffer conductivities and large-volume sample stacking (LVSS)–sweeping capillary electrophoresis, for analysis of carbamazepine (CBZ) and its five metabolites in serum. The capillary (50/60 cm) was filled with a high concentration of background electrolyte (150 mM phosphate, pH?3.5, containing 15 % methanol), followed by a large volume of samples (10 psi, 20 s) with low-concentration buffers (5 mM phosphate, pH?3.5, with 5 % methanol). When high voltage was applied (?20 kV), the sodium dodecyl sulfate (SDS) started to sweep the analytes to an outlet. Meanwhile, the analytes decelerated at the boundary between low- and high-conductivity buffers. Finally, a narrow sample zone was formed. The procedure of sweeping and separation was simultaneously carried out by a sweeping buffer (150 mM phosphate, pH?3.5) with 15 % methanol and 50 mM SDS added, and the detection was performed by UV at 214 nm. The method was validated for linearity (r?≧?0.997), precision, and accuracy. The calibration curves were established for CBZ and its five metabolites between 0.03–25 and 0.03–3 μg/mL. The limits of detection (S/N?=?3) were 0.01 μg/mL for each analyte. Compared with simple MEKC (0.5 psi, 5 s), this system can improve the sensitivity about 300-fold. Finally, this method was successfully applied to five patients, who had taken 200 mg CBZ daily, and CBZ levels were found to be from 3.72 to 5.82 μg/mL.
Figure
Chromatogram of resolution of analytes extracted from serum by LVSS-sweeping CE.; peaks: 1. CBZ, 2. CM-3, 3. CM-E, 4. CM-2, 5. CM-10, 6. CM-D, IS: ethyl paraben  相似文献   

14.
Capillary electrophoresis (CE) was applied to analyse the long-chain fatty acid composition of vegetable oils, and their degradation products formed upon ageing when drying oils are used as binding media. The analytes were detected with contactless conductivity detection (CCD) and indirect UV absorption, both detectors positioned on-line at the separation capillary. The long-chain fatty acids were resolved in a background electrolyte (BGE) consisting of phosphate buffer (pH = 6.86, 15 mM) containing 4 mM sodium dodecylbenzensulfonate, 10 mM Brij 35, 2% (v/v) 1-octanol and 45% (v/v) acetonitrile. As in this system dicarboxylic analytes, the products of oxidative degradation of unsaturated fatty acids, cannot be determined, a suitable background electrolyte was developed by the aid of computer simulation program PeakMaster. It makes use of a 10 mM salicylic acid, 20 mM histidine buffer, pH 5.85, which combines buffering ability with the optical properties obligatory for indirect UV detection. This buffer avoids system eigenpeaks, which are often impairing the separation efficiency of the system. Separation of the dicarboxylic analytes was further improved by a counter-directed electroosmotic flow (EOF), obtained by dynamically coating the capillary wall with 0.2 mM cetyltrimethylammonium bromide. Long-chain fatty acids and their decomposition products could be determined in recent and aged samples of drying oils, respectively, and in samples taken from two paintings of the 19th century.  相似文献   

15.
A new method for the analysis of phospholipids by normal-phase HPLC is described using a silica column. Addition of ammonia and triethylamine to a gradient based on chloroform/methanol/water promoted a good and rapid separation of phospholipid classes (20 min run). The use of an evaporative light scattering detector permitted an accurate analysis of a mixture of phospholipids. Calibration curves were linear within different range for each phospholipid class. The LOD and LOQ obtained were below 0.03 and 0.05 mg kg−1 for all cases, respectively. Besides, a new method for the separation of phospholipids from total lipids before HPLC analysis by a solid-phase extraction (SPE) with Si cartridges has been developed. This methodology gave a good recovery ranging from 97 to 117%. The method was validated with a standard mixture of phospholipids. This method has been applied to characterize the phospholipid fraction of subcutaneous fat from Iberian pig. Cardiolipin, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin have been described for first time in these samples. The fatty acid composition of the different phospholipid classes and their HPLC electrospray ionization mass spectrometry have been used for characterizing the molecular species present in each one.  相似文献   

16.
Fast atom bombardment tandem mass spectrometry, employing ion-molecule reactions with ethyl vinyl ether in a triple-quadrupole mass spectrometer, is used to differentiate classes of phospholipids. The phospholipids are desorbed and ionized by fast atom bombardment, mass-selected by the first quadrupole, and reacted with ethyl vinyl ether in the second quadrupole; the resulting product ions are analyzed by the third quadrupole. The protonated molecules and reaction product ions observed permit the differentiation of various phospholipid classes. The pattern of addition reaction products formed is shown to depend solely on the functionality of the lipid polar head group and not on the fatty acyl constituents. Neutral gain scans that are specific for each phospholipid class are performed. Ion dissociation products are observed in the same scan as the ion reaction products to provide data on the fatty acyl composition and position on the glycerophosphate core along with the phospholipid class. Although this method is less sensitive than neutral loss scanning for most phospholipid classes, it can (1) identify phospholipids that do not readily lose their head group as a neutral fragment and (2) detect phospholipids in mixtures containing species that give interfering neutral losses.  相似文献   

17.
An intermolecular interaction model for selective association processes of double-chain phospholipids in bilayer lipid membranes has been proposed, analysed and solved numerically. A large variety of binary mixtures of asymmetrical double-chain phospholipids with the cross-sectional areas of the polar headgroups a1 = 40 Å2 (the first component) and a2 = 60 Å2 (the second component) have been investigated. Changing the hydrophobic acyl-chain lengths of both mixture components, we found in all cases that the self-association probability (the association of like-pairs of phospholipids) of the first component in parallel alignment of the electric dipole moments of the polar headgroups is higher than the cross-association probability (the association of cross-pairs of phospholipids) and the self-association probability of the second component. This result is in good agreement with the experimental evidence that where the cross-sectional area of the polar headgroups matches the hydrocarbon chain-packing cross-sectional area (a 2Ξ 40 Å2), lipids possess a high tendency to aggregate into well packed bilayer structures with the acyl-chains oriented perpendicularly to the bilayer plane. Our theoretical data confirm that the double-chain phospholipids may associate themselves into anti-parallel alignment of the polar headgroups (P22) as well. The hydrophobic acyl-chain effect of phospholipids may modulate the distribution of lipid domains within bilayers that have a large variety of functional roles in cellular metabolism.  相似文献   

18.
<正>A high-performance capillary electrophoresis with amperometry detection method(CE-AD) has been developed for the analysis of flavonoids and anthraquinones(emodin,kaempferol,apigenin,luteolin and rhein) in chrysanthemum.Under optimum conditions,these five analytes were base-line separated within 17 min using a borate-phosphate running buffer(1.5×10~(-2) mol/L borate-3×10~(-2) mol/L phosphate running buffer,pH 9.0) at a working potential of +0.90 V(vs.SCE) and a separation voltage of 19 kV.The linear relationship between concentration and current response was obtained with detection limits(S/N = 3) ranging from 1.0×10~(-7) to 2.1×10~(-7) g/mL for all analytes.This proposed method was successfully used in the analysis of four kinds of chrysanthemum with relatively simple extraction procedures,the assay results were satisfactory.  相似文献   

19.
A new, rapid, sensitive, robust, and reliable method has been developed for the qualitative analysis of phosphoserine, phosphoethanolamine, phosphoglycerol, and phosphate using gas chromatography with mass spectrometry and two‐step trimethylsilylation. The method employs hexamethyldisilazane for silylation of the phosphate and hydroxyl groups in the first phase and bis(trimethylsilyl)trifluoroacetamide for silylation of the less‐reactive amino groups in the second phase. This order is of key importance for the method because of the different reactivities of the two reagents and the mechanism of derivatization of the active groups of the analytes. Trimethylsilylated derivatives of the analytes were identified on the basis of their retention times and mass spectra. The probable structures of the major fragments were identified in the spectra of the trimethylsilylated derivatives and characteristic m/z fragments were selected for each analyte. Fragments with m/z 73 and 299 occurred in the spectra of all the analytes. The characteristic retention data were employed to calculate the retention indices of the individual silylated phosphorylated substances in the hydrocarbon range C12–C19 for the DB‐5ms column. The method was employed to measure the polar fraction of the hydrolysate of the cytoplasmic membrane of Bacillus subtilis. The detection limits vary between 5 μg/mL (trimethylsilylated phosphate) and 72 μg/mL (trimethylsilylated phosphoethanolamine).  相似文献   

20.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号