首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract

Density, viscosity and surface tension of two binary liquid systems: 2-butanone + n-propionic acid, 2-butanone + n-butyric acid have been determined at 20, 30 and 40°C, over the whole compositional range. The excess values of molar volume, viscosity, Gibbs free energy for the activation of flow and surface tension were evaluated. These excess values were fitted to a Redlich-Kister type of equation. The Grunberg-Nissan parameter, d, was also calculated. The binary viscosity data were fitted to the models of McAllister, Heric, Auslander and Teja and Rice. Surface tension data were fitted to the models of Zihao and Jufu, Rice and Teja, and an empirical two-constant model proposed in this study.  相似文献   

2.
In the selected regions La:(La + U) = 0.05 and O:(La + U) = 2.00 of the ternary system lanthanum-uranium-oxygen emf measurements on solid state galvanic cells, coulometric titrations, and X-ray diffraction techniques were used to obtain phase boundaries and thermodynamic data in the temperature range from 600 to 1000°C. For the first time order disorder transformations of La1−yUyO2+x up to 15 mole% lanthanum are reported. The transformation temperature is 1415°K for UO2.23; 1397°K for La0.05U0.95O2.23, and 1449°K for La0.15U0.85O2.23. The vibrational entropy component of excess oxygen in M1−yUyO2+x is estimated.  相似文献   

3.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) hollow fibers were fabricated using a phase inversion/sintering method. As oxygen permeation of BSCF hollow fibers is controlled by the rate surface exchange kinetics, catalytic Ag particles were coated on both inner and outer surfaces using chemical deposition method, as verified by SEM and EDX. The Ag coated BSCF membranes showed up to 100% increase in oxygen permeation at 700 °C, and improvements lower than 10% were measured at 950 °C as compared with unmodified membranes. It was found that Ag catalyst surface loading was non-homogenous and concentrated on the perovskite grain boundaries. As a result, lighter Ag surface loading delivered improved oxygen flux while oxygen flux reached a maximum even though in the presence of excess catalyst loading. The catalytic activity of Ag was beneficial in enhancing surface reaction kinetics up to 850 °C attributed to the spillover effect. Above this temperature, the increase in oxygen permeation rate was marginally diminished due to the reduction of the spillover effect.  相似文献   

4.
Phase equilibria in the ternary systems Mn, Fe, Co, and Ni---Si---N are investigated and isothermal sections at 900°C (Fe---Si---N, Ni---Si---N), at 1000°C (Mn---Si---N, Co---Si---N) and at 1150°C (Fe---Si---N) are presented. In the system Mn---Si---N, Si3N4 coexists with MnSiN2, Mn3Si, Mn5Si3, MnSi, and MnSi2−x. In the systems Fe, Co, Ni---Si---N, Si3N4 coexists with all binary silicides but reacts rapidly with iron above 1120 ± 10°C, and cobalt and nickel above 1170 ± 10°C to form binary silicides and nitrogen gas.  相似文献   

5.
The influence of dodecylamine hydrochloride (DAC) on the dissolution rate behavior of hydroxyapatite (HAP) samples prepared by digestion at 100°C and heated to various temperatures was investigated. The dissolution rates of HAP samples heated to temperatures of 300, 500, 750, 900, 1000, and 1200°C were determined at various levels of DAC in an acetate buffer having a pH of 4.50 and an ionic strength of 0.10. DAC adsorption isotherms for these different HAP samples and the specific surface areas were also determined. The initial dissolution rates (IDR) for all preparations generally decreased with increasing DAC levels with an approximately inverse relationship between IDR and DAC adsorption. For HAP samples heated at 1000°C and higher, the dissolution rates at 3.0 mM DAC were completely inhibited, while for samples heated at 900°C or less, there was a significant residual IDR at 3.0 mM DAC. This residual rate was approximately 20% of the zero DAC rate for all samples treated between 300 and 900°C. These results are in agreement with the concept that HAP prepared by precipitation and digestion at 100°C has two or more kinds of sites for dissolution and that heat treatment at around 1000°C or greater causes the elimination of one or more of these sites.  相似文献   

6.
Density, viscosity, and surface tension of three binary liquid systems: ethanoic acid+nitrobenzene, propanoic acid+nitrobenzene, and butanoic acid+nitrobenzene have been determined at 25, 35, and 45°C, over the whole composition range. The excess molar volumes, viscosities, Gibbs energies for the activation of flow, and surface tension were evaluated and fitted to a Redlich-Kister type of equation. The Grunberg-Nissan parameter d was also calculated. Binary viscosity data were fitted to the models of McAllister, Heric, Krishnan, and Laddha, Auslander, and Teja and Rice. Surface tension data were fitted to the models of Zihao and Jufu, Rice, and Teja, and an empirical two-constant model.  相似文献   

7.
The adsorption behavior of polycations at ionic strengths (I) ranging from 0.001 to 0.1 onto silicon wafers was studied by means of ellipsometry, contact angle measurements and atomic force microscopy (AFM). Polycations chosen were bromide salts of poly(4-vinylpyridine) N-alkyl quaternized with linear aliphatic chains of 2 and 5 carbon atoms, QPVP-C2 and QPVP-C5, respectively. Under I=0.001 the reduction of screening effects led to low adsorbed amounts of QPVP-C2 or QPVP-C5 (1.0±0.1 mg/m2), arising from the adsorption of extended chains. Upon increasing I to 0.1, screening effects led to conformational changes of polyelectrolyte chains in solution and to higher adsorbed amount values (1.9±0.2 mg/m2). Advancing contact angle θa measurements performed with water drops onto QPVP-C2 and QPVP-C5 adsorbed layers varied from (45±2)° to (50±5)°, evidencing the exposure of both hydrophobic alkyl groups and charged moieties. The adsorption of lysozyme (LYZ) molecules to QPVP-C5 layers was more pronounced than to QPVP-C2 films. Antimicrobial effect of LYZ bound to QPVP-C2 or QPVP-C5 layers or to Si wafers was evaluated with enzymatic assays using Micrococcus luteus as substrates. The adsorption behavior of QPVP-C2 and QPVP-C5 at the water–air interface was studied by means of surface tension measurements. Only QPVP-C5 was able to reduce water surface tension. Mixtures of LYZ and QPVP-C5 were more efficient in reducing surface tension than pure LYZ solution, evidencing co-adsorption at liquid–air interface. Moreover, antimicrobial action observed for mixtures of LYZ and QPVP-C5 was more pronounced than that measured for pure LYZ. Hydrophobic interaction between LYZ and QPVP-C5 in solution seems to drive the binding and to preserve LYZ secondary structure.  相似文献   

8.
Shen D  Kang Q  Wang YE  Hu Q  Du J 《Talanta》2008,76(4):803-808
In a traditional quartz crystal microbalance (QCM), an AT-cut (cut angle φ = 35.25° in yxl orientation) quartz wafer is employed because it has low frequency–temperature coefficients (dF/dT) at room temperature region. But when a QCM is in contact with a liquid phase, its frequency is also related to the properties of the liquid, which are temperature dependent. The value of dF/dT is about 20 Hz/°C for a 9 MHz AT-cut QCM with one side facing water. In this work, a group of QCMs in new cut angles were prepared. The influence of the cut angle on the frequency–temperature characteristic, response sensitivities to surface mass loading and viscodensity of liquid were investigated. An intrinsically temperature-compensated QCM sensor that possesses low dF/dT values in aqueous solution was reported. When a 9 MHz QCM with φ = 35.65° was contacted with water with one side, its dF/dT value is close to zero at ca. 25 °C and its averaged value of |dF/dT| is only 0.6 Hz/°C in the temperature range of 23–27 °C. The frequency responses to surface mass loading and viscodensity of liquid phase are very close among the QCMs with the cut angles in the range of 35.15–35.7°. The intrinsically temperature-compensated QCM was applied to investigate the alternate adsorption processes of cationic polyelectrolyte and silica nanoparticle.  相似文献   

9.
The double-layer properties of colloidal RuO2, prepared by thermal decomposition of RuCl3 at 420°C, have been studied by potentiometric acid-base titrations in combination with electrophoretic mobility measurements. The point of zero charge (pzc) in KNO3 solutions was found to be pH 5.75 ± 0.05, and the isoelectric point (iep) is positioned at pH 5.8. From the total capacitance of the double layer at the pzc an electrochemical surface area of 21.5 m2/g has been found, which is equal to the BET surface area. The capacitance of the inner part of the double layer (Ci) is 300 μF/cm2, which is high compared to Ci on AgI and Hg, but of the same order as that commonly found for oxides. This subject is briefly discussed. The surface charge (σ0) as a function of pH could be fitted satisfactorily with a simple double-layer model. In the presence of KCl the pzc and the iep are shifted to higher and lower pH, respectively, indicating specific adsorption of Cl ions. The ionic composition of the double layer as a function of σ0 and the specific adsorption of Cl at the pzc have been calculated by a straightforward thermodynamic analysis combined with diffuse double-layer theory. Methylviologen (MV2+) also adsorbs specifically and at negative surface charges superequivalent adsorption can take place. In the presence of an excess of KNO3, specific adsorption of MV2+ is no longer noticeable. Some consequences for the catalytic reduction of water by RuO2 in the presence of MV2+ are considered.  相似文献   

10.
Fibrinogen (FB), a serum protein, is considered a major inhibitor of lung surfactant function at the lining layer of the alveoli. In this study, the adsorption of aqueous bovine FB at the air/water interface was investigated with tensiometry and directly probed for the first time with ellipsometry and infrared reflection adsorption spectroscopy (IRRAS). The tension results show that FB has moderate surface activity. The surface densities of FB were calculated by using two different ellipsometry models to range from 3±0.2 to 17±2 mg/m2, for 7.5 to 750 ppm of FB in water at 25°C. Although FB at concentrations from 75 to 750 ppm reached about the same steady surface tension value, the surface densities at 750 ppm FB were substantially larger. The same techniques were used for studying aqueous mixtures of 7.5 to 750 ppm FB with 2 mM of sodium myristate (SM) to investigate a possible interaction of the SM with the protein. The behavior of the FB/SM mixtures was found to be close to that of SM alone. The surface tension of the FB/SM mixtures reached values less than 10 mN/m under surface area oscillation at 20 or 80 rpm. These results and the ellipsometry and the IRRAS results indicate that at a concentration of 2 mM SM, FB, up to 750 ppm, does not inhibit the surfactant surface-tension-lowering function. In certain cases the results demonstrate that FB and SM may act cooperatively in lowering the surface tension.  相似文献   

11.
This study evaluates the interactions of a model stratum corneum (SC) lipid system based on ceramide AP (N-(2-hydroxystearoyl)phytosphingosine) with three selected permeation enhancers including urea, oleic acid (OA), and N-lauroylglycine lauryl ester (12G12) using temperature-dependent small-angle X-ray diffraction measurements. As a first step, the thermotropic phase behaviour of the control SC lipid membrane, i.e. without enhancer, was characterized. The system shows two separated phases at 32 °C, which mix into another phase at around 45 °C. This phase is stable till 70 °C when the repeat distance starts to decrease. After cooling, only one phase is visible which shows two phase transitions at 45 and 70 °C again. Based on these results, the effects of the permeation enhancers were studied. The permeation enhancers influence the phase behaviour of the system. Urea and 12G12 cause a concentration-dependent shift of the phase transition temperatures while OA induces a phase separation. The results from this simple model system may provide basis for studies on more complex systems or real SC.  相似文献   

12.
The phase relations in the Fe-rich part of the pseudo-binary system SrO–Fe2O3 (>33 mol% Fe2O3) were reinvestigated between 800 and 1500 °C in air. A combination of microscopy, electron probe micro-analysis, powder X-ray diffraction and thermal analysis was used to determine phase relations, crystal structure parameters and phase transition temperatures. M-type hexagonal ferrite SrFe12O19 (85.71 mol% Fe2O3) is stable up to 1410 °C. No indication of a significant phase width was found; Sr4Fe6O13±δ appears as a second phase in compositions with <85.71±0.2 mol% Fe2O3. Sr4Fe6O13±δ itself is stable between 800 and 1250 °C. Two other hexagonal ferrites were found to exist at high temperatures only: W-type SrFe2+2Fe3+16O27 is stable between 1350 and 1440 °C and X-type ferrite Sr2Fe2+2Fe3+28O46 between 1350 and 1420 °C, respectively, which is shown here for the first time. These findings in combination with previously published data were used to derive a corrected phase diagram of the Fe-rich part of the pseudo-binary system SrO–Fe2O3.  相似文献   

13.
Temperature-sensitive hydrophilic gel microcapsules have been newly prepared. That is, poly ( -lysineisopropylamide–terephthalic acid) microcapsules containing water have been obtained by an interfacial polymerization at a water/oil interface between -lysineisopropylamide and terephthaloyldichloride. The microcapsule changes its size between 33 and 35°C. Under 33°C, the microcapsules are fully spherical and can be redispersed in distilled water, while are aggregated above 35°C. The microcapsules, which are observed to show aggregation above 33°C, can be redispersed by decreasing temperature within a few second. The thermosensitive morphological changes of the microcapsules are thus reversible. Also, it has been shown that the permeability of sodium chloride through the microcapsule membrane changes remarkably between 33 and 35°C, while it is kept almost constant independent of temperature between 25 and 33°C or between 35 and 55°C. The permeability of solutes is higher under 33°C than that above 35°C. Such thermosensitive properties result from the fact that the polymer membrane has isopropylamide groups. That is, -lysineisopropylamide has a chemical structure similar to N-isopropylacrylamide, the polymer of which, poly (N-isopropylacrylamide), is a thermosensitive hydrogel having its phase transition temperature around 33°C.  相似文献   

14.
Layered double hydroxides with the hydrotalcite-like structures, containing Mg2+ and Al3+, doped with Cr3+ and Y3+, have been prepared by precipitation at constant pH. The weight percentages of Cr3+ and Y3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV–vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at −196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE – L*a*b*) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.  相似文献   

15.
A series of heterogeneous latexes having stage ratios of 40:60 between the first and second stage polymers were prepared by emulsion polymerization. The first-stage polymers were non-polar S-BuA with Tgs ranging from + 100 °C to + 20 °C and the second stage polymer was polar MMA–BuA–MAA having a Tg of 20 °C. The latex particle morphologies were studied using TEM and the thermomechanical properties of the resulting latex films were studied with DSC and DMA. Calculated diffusion rates for propagating species during the reactions were correlated to the observed morphologies and to the amount of interphase in the latex particles. To cite this article: O.J. Karlsson et al., C. R. Chimie 6 (2003).  相似文献   

16.
The density and speed of sound of the ternary mixture (diethyl carbonate + p-xylene + octane) have been measured at atmospheric pressure and in the temperature range T = (288.15 to 308.15) K. Besides, surface tension has been also determined for the same mixture at T = 298.15 K. The experimental measurements have allowed the calculation of the corresponding derived properties: excess molar volumes, excess isentropic compressibilities, and surface tension deviations. Excess properties have been correlated using Nagata and Tamura equation and correlation for the surface tension deviation has been done with the Cibulka equation. Good accuracy has been obtained. Based on the variations of the derived properties values with composition, a qualitative discussion about the intermolecular interactions was drawn.  相似文献   

17.
The flat sheet polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) membranes were prepared by immersion precipitation technique. The influence of hot air and water treatment on morphology and performance of membranes were investigated. The membranes were characterized by AFM, SEM, cross-flow filtration of milk and fouling analysis. The PES membrane turns to a denser structure with thick skin layer by air treatment at various temperatures during different times. This diminishes the pure water flux (PWF). However the milk permeation flux (MPF) was considerably improved at 100 °C air treatment for 20 min with no change in protein rejection. The smooth surface and slight decrease in surface pore size for air treated PES membrane at 100 °C compared to untreated membrane may cause this behavior for the membrane. The water treatment of PES membranes at 55 and 75 °C declines the PWF and MPF and increases the protein rejection. This is due to slight decrease in membrane surface pore size. The treatment of PES membrane with water at higher temperature results in a porous structure with superior performance. The fouling analysis of 20 min treated membrane indicates that the surface properties of 100 °C air treated and 95 °C water treated PES membranes are improved compared to untreated membrane. The SEM observation depicts that the morphology of air and water treated PVDF membranes was denser and smoother with increasing the heat treatment temperature. The 20 min air treated PVDF membranes at 100 °C and water treated at 95 °C exhibited the highest performance and antifouling properties.  相似文献   

18.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

19.
The surface tension of aqueous solutions of tetraethyleneglycol octyl ether (C8E4) and octyl-β-d-maltopyranoside (OM) mixture was measured as a function of the total molality of surfactants and the composition of OM under atmospheric pressure at 298.15 K by drop volume technique. The results of surface tension measurements were analyzed by originally developed thermodynamic equations, then phase diagrams of adsorption and micelle formation were constructed. From the analysis of the surface tension data, it was found that the C8E4 and OM molecules interact attractively in the adsorbed film and the excess Gibbs energy of adsorption can be compared with those observed in typical cationic–nonionic surfactant systems; nevertheless, they are mixed almost ideally in the mixed micelle. Judging from a negative excess surface area calculated by differentiating the excess Gibbs energy by the surface tension, we concluded that the attraction between C8E4 and OM molecules is a short-range one originated in the hydrogen bonding between them which favors the planar configuration.  相似文献   

20.
The micellization behavior of bis cationic gemini surfactant, N,N′-dihexadecyl-N,N,N′,N′-tetramethyl-1,12-dodecanediammonium dibromide [C16H33N+(CH3)2-(CH2)12-N+(CH3)2C16H33, 2Br] has been studied in binary aqueous mixtures of dimethyl sulfoxide, methanol, 1,4-dioxane, glycerol and ethylene glycol by conductivity and surface tension measurements at 300 K. The critical micellar concentration, degree of micelle ionization (α), surface excess concentration (Гmax), minimum surface area per molecule of surfactant (Amin), Gibbs free energy of micellization (ΔGm°), the surface pressure at cmc (πcmc), and the Gibbs energy of adsorption (ΔGad°) of the gemini surfactant have also been determined. The cmc, α, Amin increases where as (ΔGm°), Гmax, and πcmc decreases with increasing volume percentage of the solvents in the solvent–water binary mixture. The interfacial properties of the gemini surfactant, solute–solute, solvent–solute interactions and the effectiveness of a surface-active molecule in binary solvent systems have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号