首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finite element dynamic response of an unsymmetric composite laminated orthotropic beam, subjected to moving loads, has been studied. One-dimensional finite element based on classical lamination theory, first-order shear deformation theory, and higher-order shear deformation theory having 16, 20 and 24 degrees of freedom, respectively, are developed to study the effects of extension, bending, and transverse shear deformation. The theories also account for the Poisson effect, thus, the lateral strains and curvatures can be expressed in terms of the axial and transverse strains and curvatures and the characteristic couplings (bend–stretch, shear–stretch and bend–twist couplings) are not lost. The dynamic response of symmetric cross-ply and unsymmetric angle-ply laminated beams under the action of a moving load have been compared to the results of an isotropic simple beam. The formulation also has been applied to the static and free vibration analysis.  相似文献   

2.
Conclusions In this paper, a new benchmark was presented to verify the finite element method programs for analysis of composite element impact problems. The benchmark presented possesses a double contact between the impactor and the laminated plate. The results of the analytical solution were presented, and compared with the results obtained by a commercially available FEM-program. This work was an example of a numerical solution method verification, and the test was found suitable as a benchmark due to its simplicity in modeling and its versatility in assessing programs.Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 2, pp. 209–215, March–April, 1995.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).  相似文献   

3.
A simple C0 isoparametric finite element formulation based on a set of higher-order displacement models for the analysis of symmetric and asymmetric multilayered composite and sandwich beams subjected to sinusoidal loading is presented. These theories do not require the usual shear correction coefficients which are generally associated with the Timoshenko theory. The four-noded Lagrangian cubic element with kinematic models having four, five and six degrees of freedom per node is used. A computer algorithm is developed which incorporates realistic prediction of transverse interlaminar stresses from equilibrium equations. By comparing the results obtained with the elasticity solution and the CPT (classical laminated plate theory) it is shown that the present higher-order theories give a much better approximation to the behaviour of laminated composite beams, both thick and thin. In addition numerical results for unsymmetric sandwich beams are presented which may serve as benchmark for future investigations.  相似文献   

4.
This paper presents an efficient and accurate differential quadrature (DQ) large amplitude free vibration analysis of laminated composite thin beams on nonlinear elastic foundation. Beams under consideration have elastically restrained against rotation and in-plane immovable edges. Elastic foundation has cubic nonlinearity with shearing layer. We impose the boundary conditions directly into the governing equations in spite of the conventional DQ method and without any extra efforts. A direct iterative method is used to solve the nonlinear eigenvalue system of equations after transforming the governing equations into the frequency domain. The fast rate of convergence of the method is shown and their accuracy is demonstrated by comparing the results with those for limit cases, i.e. beams with classical boundary conditions, available in the literature. Besides, we develop a finite element program to verify the results of the presented DQ approach and to show its high computational efficiency. The effects of different parameters on the ratio of nonlinear to linear natural frequency of beams are studied.  相似文献   

5.
在王震鸣等人提出的各向异性多层扁壳的大挠度方程的基础上,提出了复合材料多层板壳大挠度非线性问题的迭代解法。分析了四边简支的复合材料多层矩形扁壳,与小挠度线性理论解析解及有限元非线性解进行了对比。结果表明,载荷较小并发生小挠度时,所得的大挠度解和小挠度解析解非常接近,载荷较大时,所得解和有限元非线性解非常接近。  相似文献   

6.
A method is presented for maximum strength optimum design of symmetric composite laminates subjected to in-plane and transverse loadings. The finite element method based on shear deformation theory is used for the analysis of composite laminates. Ply orientation angles are chosen as design variables. The quadratic failure criterion which is meant to predict fracture, is used as an object function for optimum stacking sequence design of a laminated plate. The Broydon-Fletcher-Goldfarb-Shanno optimization technique is employed to solve the optimization problem effectively. Numerical results are given for various loading conditions, boundary conditions, and aspect ratios. The results show that the quadratic failure criterion such as Tsai-Hill theory is effective for the optimum structural design of composite laminates.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October 1995).Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 3, pp. 393–404, May–June, 1995.  相似文献   

7.
Conclusions The illustrative examples presented above show that the proposed optimum design method based on planning of experiments is an efficient method for the minimum weight design of sandwich and laminated composite plates. Vibration and damping constraints can be modeled using simple mathematical expressions. These expressions are obtained using the finite element solution in the experiment points. Reference points in the search domain are determined from plans of experiment. The advantage of the proposed method is its minimum computational effort for repeated finite element solutions. The major advantage of the method is the possibility of using the data not only from the computer solution, but also the data obtained experimentally in the reference points. In this case, simple mathematical models represent both theoretical and experimental data.Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 1, pp. 51–64, January–February, 1995.  相似文献   

8.
This paper applies the asymptotic perturbation approach (APA) to obtain a simple analytical expression for the free vibration analysis of non-uniform and non-homogenous beams with different boundary conditions. A linear governing equation of non-uniform and non-homogeneous beams is obtained based on the Euler–Bernoulli beam theory. The perturbative theory is employed to derive an asymptotic solution of the natural frequency of the beam. Finally, numerical solutions based on the analytical method are illustrated, where the effect of a variable width ratio on the natural frequency is analyzed. To verify the accuracy of the present method, two examples, piezoelectric laminated trapezoidal beam and axially functionally graded tapered beam, are presented. The results are compared with those results obtained from the finite element method (FEM) simulation and the published literature, respectively, and a good agreement is observed for lower-order beam frequencies.  相似文献   

9.
The behavior of structures with different damping models has been investigated using finite element and frequency response analyses. As an example, systems with hysteretic and viscous damping were examined. The damped eigenfrequencies and the corresponding loss factors were computed based on frequency response analysis and then compared to the results obtained from free vibration analysis using the method of complex eigenvalues. Recommendations are given for a more effective employment of frequency response and damping analyses in the structures considered.Institute of Computer Analysis of Structures, Riga Technical University, Kalku, St. 1, Riga, LV-1658 Latvia. Published in Mekhanika Kompozitnykh Materialov, Vol. 33, No. 2, pp. 226–234, March–April, 1997.  相似文献   

10.
Shell type components and structures are very common in many mechanical and structural systems. In smart structural applications, piezolaminated plates and shells are commonly used. In this paper a finite element formulation is presented to model the static and dynamic response of laminated composite shells containing integrated piezoelectric sensors and actuators subjected to electrical, mechanical and thermal loadings. The formulation is based on the first order shear deformation theory and Hamilton's principle. In this formulation, the mass and stiffness of the piezo-layers have been taken into account. A nine-noded degenerated shell element is implemented for the analysis. The model is validated by comparing with existing results documented in the literature. A simple negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of an integrated structure through a closed control loop. The influence of the stacking sequence and position of sensors/actuators on the response of the laminated cylindrical shell is evaluated. Numerical results show that piezoelectric sensors/actuators can be used to control the shape and vibration of laminated composite cylindrical shell.  相似文献   

11.
In the present paper, fundamental frequency optimization of symmetrically laminated composite plates is studied using the combination of Elitist-Genetic algorithm (E-GA) and finite strip method (FSM). The design variables are the number of layers, the fiber orientation angles, edge conditions and plate length/width ratios. The classical laminated plate theory is used to calculate the natural frequencies and the fitness function is computed with a semi-analytical finite strip method which has been developed on the basis of full energy methods. To improve the speed of the optimization process, the elitist strategy is used in the Genetic algorithm. The performance of the E-GA is also compared with the simple genetic algorithm and shows the good efficiency of the E-GA algorithm. A multi-objective optimization strategy for optimal stacking sequence of laminated box structure is also presented, with respect to the first natural frequency and critical buckling load, using the weighted summation method to demonstrate the effectiveness of the E-GA. Results are corroborated by comparing with other optimum solutions available in the literature, wherever possible.  相似文献   

12.
A finite element model is developed to study the large-amplitude free vibrations of generally-layered laminated composite beams. The Poisson effect, which is often neglected, is included in the laminated beam constitutive equation. The large deformation is accounted for by using von Karman strains and the transverse shear deformation is incorporated using a higher order theory. The beam element has eight degrees of freedom with the inplane displacement, transverse displacement, bending slope and bending rotation as the variables at each node. The direct iteration method is used to solve the nonlinear equations which are evaluated at the point of reversal of motion. The influence of boundary conditions, beam geometries, Poisson effect, and ply orientations on the nonlinear frequencies and mode shapes are demonstrated.  相似文献   

13.
Maximum viscoelastic damping characteristics of sandwich structures are designed using finite element and informative planning methods. Two basic design problems were considered: addition of a damping coating to a given homogeneous structure and building a sandwich structure subjected to a given set of constraints. The methods of complex eigenvalues and direct calculation of the frequency characteristics were used. Numerical examples of optimizing sandwich beams are presented for both design problems.Translated from Mekhanika Kompozitnykh Materialov, Vol. 29, No. 5, pp. 653–656, September–October, 1993.  相似文献   

14.
In this work, a transverse bending of shear deformable laminated composite plates in Green–Lagrange sense accounting for the transverse shear and large rotations are presented. Governing equations are developed in the framework of higher order shear deformation theory. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strains conditions at the top and bottom surfaces of the plate in von-Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model. Numerical results for the laminated composite plates of orthotropic materials with different system parameters and boundary conditions are found out. The results are also compared with those available in the literature. Some new results with different parameters are also presented.  相似文献   

15.
In this work, a meshless method, “natural neighbour radial point interpolation method” (NNRPIM), is applied to the one‐dimensional analysis of laminated beams, considering the theory of Timoshenko.The NNRPIM combines the mathematical concept of natural neighbours with the radial point interpolation. Voronoï diagrams allows to impose the nodal connectivity and the construction of a background mesh for integration purposes, via influence cells. The construction of the NNRPIM interpolation functions is shown, and, for this, it is used the multiquadratic radial basis function. The generated interpolation functions possess infinite continuity and the delta Kronecker property, which facilitates the enforcement of boundary conditions, since these can be directly imposed, as in the finite element method (FEM).In order to obtain the displacements and the deformation fields, it is considered the Timoshenko theory for beams under transverse efforts. Several numerical examples of isotropic beams and laminated beams are presented in order to demonstrate the convergence and accuracy of the proposed application. The results obtained are compared with analytical solutions available in the literature.  相似文献   

16.
To improve the efficiency in predicting the dynamic mode and static response of the two-layer partial interaction composite beams, this paper utilizes the differential quadrature technique to approximate derivatives of the primary unknowns with adaptive order of precision, rather than the low and constant order of interpolation used in the conventional finite element method (FEM). A degree-of-freedom-adaptive weak-form quadrature element (WQE) for dynamic analysis is formulated and implemented based on the principle of virtual work. For the purpose of comparison, a parabolic displacement-based finite element is also provided, thus (1) the predicted deflections and natural frequencies of the composite beams are verified; (2) the smoothness of the internal forces and stresses generated by WQE method and FEM are compared, and (3) the convergent rates of higher order free vibration modes are also examined. Numerical results show that the efficiency of the proposed WQE method has, on the one hand, significantly triumphed over that of FEM on analyses including static response, natural frequencies and higher order free vibration modes, on the other hand, the smoothness of results, including internal forces and stresses, is greatly refined.  相似文献   

17.
Three types of partial hybrid finite elements are presented in order to set up a global/local finite element model for analysis of composite laminates. In the global/local model, a composite laminate is divided into three different regions: global, local, and transition regions. These are modeled using three different elements. In the global region, a 4-node degenerated plate/shell element is used to model the overall response of the composite laminate. In the local region, a multilayer element is used to predict detailed stress distribution. In the transition region, a multilayer transition element is used to smoothly connect the two previous elements. The global/local finite element model satisfies the compatibility of displacement at the boundary between the global region and the local region. It also satisfies the continuity of transverse stresses at interlaminar surfaces and traction conditions on the top and bottom surfaces of composite laminates. The global/local finite element model has high accuracy and efficiency for stress analysis of composite laminates. A numerical example of analysis of a laminated strip with free edge is presented to illustrate the accuracy and efficiency of the model.  相似文献   

18.
Elastic unbalance of a composite flywheel is considered to be caused by different strain character of the rotating rim due to the distributed material density homogeneity or the corrective mass balancing it in the static state. An analysis has been carried out on the effect of elasticity of the rim flywheel on the linear elastic unbalance and its magnitude for an actual composite flywheel has been calculated. A procedure has been developed for the elimination of unbalance using two corrective masses. The problem of angular unbalance of a rim flywheel has also been considered. The finite element method has been used for computation.Translated from Mekhanika Kompozitnykh Materialov, Vol. 30, No. 4, pp. 552–561, July–August, 1994.  相似文献   

19.
In this work we present a novel approach to the modeling of magnetorheological elastomers (MREs) for finite deformations. Keeping in mind the composite nature at the microscale, we employ the microsphere model as an effective tool to capture the constitutive response of the material. The microsphere model has been successfully applied to the modelling of rubber-like materials. Here, we extend this approach by taking into account the effect of the magnetic dipole-dipole interactions on the orientation of the polymer chains. Thus, the presented microsphere model is directly motivated by considering the underlying phenomena at the microscale level. Finally the material model is embedded in a finite element framework and the results of a boundary value problems is presented. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Damped free vibrations of multilayered composite cylindrical shells are investigated. Vibration and damping analysis of cylindrical shells is performed by using the first-order shear deformation theory (FOSDT). Based on other researchers' works, two damping models are developed, i.e., the energy method (EM), and the method of complex eigenvalues (MCE). Several numerical examples of the damped free vibration problem of laminated composite cylindrical shells have been solved and comparison has been made with the results of other authors.Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 5, pp. 646–659, September–October, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号