首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of fullerene C60 with 4-azido-3-fluoro-1-nitrobenzene and 7-azido-6-fluoroquinoxaline afforded earlier unknown cycloadducts (C60-acceptor dyads), in which the electron affinities of the fullerene spheres are comparable with the affinity of nonmodified C60.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 650–655, March, 2005.  相似文献   

2.
Quenching excited triplet3C60 fullerene by tetracyanoethylene (TCNE) in a benzonitrile solution proceeds with a rate constant equal to (4.2±0.3) · 1018 (M · s)–1. The formation of a radical ion pair [C60 + · · · TCNE] was observed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1228–1230, July, 1993.  相似文献   

3.
Single Crystals of C60/TMPD and C60/TPA have been grown from a chlorobenzene solution. Optical transmission spectra of single crystals of fullerene complexes withN,N,N,N-tetramethyl-p-phenylenediamine (TMPD) and triphenylamine (TPA) are studied in the spectral range from 600 to 16000 cm–1. Splitting of the intramolecular vibration of C60 is observed at 1428 cm–1, which is likely caused by freezing of the rotation of the C60 molecules due to their interaction with amines. Single crystals of C60/TMPD differ from those of C60/TPA by a decrease in the vibration frequency at 1428 cm–1, vibrations of the C-C bonds of the TMPD molecule, and the redistribution of the forces of the oscillators of the vibrations of the C-N bonds. These peculiarities are interpreted to be the result of partial electron transfer from TMPD to C60 in the C60/TMPD single crystals. The electron transfer in the C60/TPA system is less pronounced.Translated fromIzvestiya akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1459–1464, June, 1996  相似文献   

4.
Ferrocenylmethyldimethylamine, FcCH2NMe2, reacts with CH2Cl2 in either the presence or absence of non-coordinating counterions to give equimolar amounts of the bis(ferrocenylmethyl)dimethyl ammonium salts (FcCH2)2NMe2+X (X=PF6, SbF6, BPh4 or Cl, 1ad) and the corresponding protonated ammonium salts FcCH2NMe2H+ which have been isolated as the SbF6 and Cl salts 2b,d. The reaction proceeds via fragmentation of an intermediate quaternary chloromethylated ammonium ion to chloromethylferrocene, FcCH2Cl, and dimethyliminium chloride NMe2CH2+Cl. The parent amine acts as a nucleophile toward FcCH2Cl to give 1ad and as a base toward NMe2CH2+ to give FcCH2NMe2H+, NMe2H and (Me2N)2CH2. The FcCH2Cl intermediate is intercepted by NEt3 while KCN or LiH do not successfully compete with FcCH2NMe2. A new, non-toxic, selective, high-yield route to 1d is also presented. Electrochemistry and UV–vis spectroelectrochemistry reveal, that the two identical redox centers in 1ad are essentially non-interacting. Individual E1/2 values have been determined for different solvents by digital simulation. The corresponding ferrocenium salts were prepared by either chemical or electrochemical means and accordingly characterized. Our studies are augmented by X-ray structure analyses of 1b, 1d and 2d. 1d contains three different cation conformers and four molecules of water per unit cell. The latter are hydrogen bonded to the chloride counterions to form one-dimensional infinite chains parallel to the a axis.  相似文献   

5.
The C60·2S8 complex was prepared by reaction of buckminsterfullerene C60 with sulfur in trichloroethylene and its single-crystal X-ray structure was studied at room temperature. Crystals of this compound are monoclinic, space groupC 2/c, a=20.90(1),b=21.10(1),c=10.537(9) Å, =111.29(7)°,Z=4,d calc=1.89 g·cm–3. The crystal structure of the C60·2S8 complex consists of packed fullerene molecules that form hexagonal channels along thec axis with eight-membered crown-shaped S8 cyclic molecules inside the channels. The distances between the centers of neighboring fullerene molecules are 10.036(7), 10.636(7), and 10.537(9) Å. Each C60 molecule is linked to eight S8 molecules with ten shortened intermolecular contacts C...S 3.41(1)–3.52(2) Å. The average values of the C=C and C-C bond lengths are 1.32(3) and 1.47(3) Å, which attest to a significant degree of localization of electron density in the c60 molecule.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 262–266, February, 1994.  相似文献   

6.
The radical adducts of the P·(O)(OPri)2 (R·) radicals with C60C[P(O)(OEt)2]2 2 fullerene derivatives were studed by ESR spectroscopy. The number of stable regioisomers of phosphorylfullerenyl radicals formed by addition of the phosphoryl radicals to the C60C[P(O)(OEt)2]2 2 isomers depends on the mutual position of the organophosphorus groups and decreases in the series trans-2 > trans-3 trans-4 > e. The rate constants for addition of the R· radicals to the trans-3 regioisomer (k = 1.7·108 L mol–1 s–1) were determined.  相似文献   

7.
The reduction of fullerene C60 by Zn and Mg in DMF was studied both in the presence and absence of KOH. Fullerene C60 was reduced in these systems to form the C60 n (n = 1, 2, and 3) anions. The anions were detected by optical and ESR spectroscopies. It was found that Mg reduced C60 to the monoanion, Mg/KOH and Zn reduced C60 to the dianion, and Zn/KOH reduced C60 to the trianion. Like KCN, potassium hydroxide adds to fullerene upon interaction with C60 in DMF. The reaction of C60 with KOH in benzonitrile was accompanied by the generation of the fullerene monoanion. A possible mechanism of the formation of fullerene monoanions in the presence of KOH is discussed. The degradation of the C60 n anions in air was studied.  相似文献   

8.
The rate constants of addition of the.CMe3,.CH2Me,.CH2(CH2)3Me,.CH2Ph,.CH2CH=CH2, and.CH(Me)Et radicals to fullerene C60 were determined by the method of competitive addition of free radicals to spin traps. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp 2369–2372, December, 1999.  相似文献   

9.
It was found that the 2-(p-fluorophenyl)hexafluoroisopropyl radical produced by thermal dissociation of the Polishchuk dimer [C(CF3)2C6H4F]2 can withdraw, under mild conditions, the H atom from the methyl group of toluene and mesitylene to form the corresponding radicals, whose addition to [60]fullerene occurs more selectively than in the case of photochemical production of these radicals. Dynamics of the step-by-step multiaddition of the radicals to C60 was studied by ESR. It was found that the addition of benzyl radicals affords adducts containing from 3 to 5 benzyl groups, whereas no spin-adducts with five addends were observed for more bulky 3,5-dimethylphenylmethyl radicals. The interaction of 3,5-dimethylphenylmethyl radicals with the metal complexes (η2-C60[IrH(CO)(PPh3)2] and (η2-C60[Pd(PPh3)2] was studied for the first time. It was shown that the palladium derivative undergoes only demetallation. In the case of the Ir complex, up to 3 radicals add to the fullerene ligand in the same hemisphere where the transition metal is coordinated. The reaction rates are ∼5 times lower than those for C60. The ability of 2-(p-fluorophenyl)hexafluoroisopropyl radicals to dehydrogenate C60H36 was found. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1119–1123, June, 1999.  相似文献   

10.
Pulse radiolysis transient UV–visible absorption spectroscopy was used to study the UV–visible absorption spectrum (225–575 nm) of the phenyl radical, C6H5(), and kinetics of its reaction with NO. Phenyl radicals have a strong broad featureless absorption in the region of 225–340 nm. In the presence of NO phenyl radicals are converted into nitrosobenzene. The phenyl radical spectrum was measured relative to that of nitrosobenzene. Based upon σ(C6H5NO)270 nm=3.82×10−17 cm2 molecule−1 we derive an absorption cross-section for phenyl radicals at 250 nm, σ(C6H5())250 nm=(2.75±0.58)×10−17 cm2 molecule−1. At 295 K in 200–1000 mbar of Ar diluent k(C6H5()+NO)=(2.09±0.15)×10−11 cm3 molecule−1 s−1.  相似文献   

11.
Cyclopalladation of mono-, di- and tribenzylamine has been investigated by reacting the corresponding amines with an equimolar amount of palladium(II) acetate (reaction i), or by heating the corresponding bis-amine complexes [Pd(O2CMe)2{(PhCH2)nNH3−n}2] (n=1, 2) (reaction ii). By the reaction i, all the three amines undergo cyclopalladation. However, in the case of the reaction ii, only the dibenzylamine complex [Pd(O2CMe)2{(PhCH2)2NH}2] has been converted into a cyclopalladated complex. The reactivity of the three benzylamines towards cyclopalladation has been discussed in terms of the co-ordinating ability influenced by the bulkiness around the nitrogen atom. Temperature-dependent 1H-NMR spectra are observed for mononuclear cyclopalladated complexes [Pd(O2CMe){C6H4CH2N(CH2Ph)2C1N}L] (L=PPh3, AsPh3) and are attributed to the dissociation of the nitrogen atom in the cyclopalladated chelate ring. A heteroleptic bis-cyclopalladated complex [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] has also been prepared. X-ray crystallographic studies on [{Pd(O2CMe)[C6H4CH2N(CH2Ph)2C1N]}2] and [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] have been reported.  相似文献   

12.
The C5–C10 cyclolakyl radicals have a weak light absorption in the 240–300 nm wavelength range that is due to Rydberg transition to the 3s orbital. The extinction coefficients at 250 nm are in the range of 350–900 mol–1 dm3 cm–1. At this wavelength for the C6–C10 radicals a local maximum appears. The radical decay obeys second order kinetics. The kinetic characteristics of the cyclic and linear radicals are generally similar, indicating that the rings are flexible and can easily overcome steric constraints in the termination process. Both the light absorption and decay characteristics of the cyclopentyl radical are somewhat different from those of the other radicals that are attributed to the special co-planar arrangement.  相似文献   

13.
A linear relationship was found between the first reduction potentials (E°red) and electron affinities (EA) for fullerenes C60 and C70, their hydro- and fluoro-derivatives, and aromatic hydrocarbons: E°red = –3.04 + 0.81·EA. This equation was used to estimate the unknown values of EA = 2.45 eV for C60H2, 2.47 eV for C70H2, –0.15 eV for C70H36—38, –0.41 eV for C70H44—46, and E°red = –1.74—–1.91 V (vs. Fc0/+) for C60H18.  相似文献   

14.
The use of a catalyst based on aluminum trichloride and copper dichloride in the reaction of fullerene with benzene afforded C60Ph19H19. At 400°C, this compound eliminates hydrogen to form C60Ph19. The compounds obtained are characterized by their high solubility in organic solvents, film-forming properties, and photoluminescence at 520 nm. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1219–1221, June, 1997.  相似文献   

15.
The reactivity of fullerene C60 toward peroxy radicals RO2 · was tested by the chemiluminescence method. A comparison of the influence of C60 and known inhibitors on the kinetics of liquid-phase chemiluminescence (CL) during oxidation of a series of hydrocarbons (ethyl-benzene, cyclohexane, n-dodecane, and oleic acid) shows that the fullerene does not react with the RO2 · radicals. A sharp decrease in the CL intensity observed upon C60 addition is caused by the quenching of CL emitters with fullerene but not by inhibition of hydrocarbon oxidation. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1808–1811, August, 2005.  相似文献   

16.
The electronic spectrum of the C60Fe(CO)4 complex was studied in a toluene solution. The more intense absorption of C60Fe(CO)4 in the visible region, relative to the free C60, can be attributed to the effect of lower symmetry of the C60 fullerene cage in C60Fe(CO)4 and, thus, relaxation of selection rules for forbidden internal electronic transitions of C60. No bands of the charge transfer from 3d(Fe) to C60 orbitals were observed in the visible region of the complex spectrum. Assignment of the bands was confirmed by semiempirical calculations of the electronic spectrum.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1453–1458, June, 1996  相似文献   

17.
Zirconium and hafnium tetrachlorides react with NaBH4, in dimethoxyethane (DME) to give [Na(DME)3][M(BH4)5]. These compounds react with Bu4NBH4 and Ph4PBH4 to give (R4E)[M(BH4)5]. Bidentate and tridentate BH 4 occur in [M(BH4)5] according to IR spectroscopy. Data from1H and1H-{11B} NMR spectra are consistent with intermolecular exchange of BH4 ligands in solutions of complexes (I)–(VI). The BH4groups and the bridging and terminal protons in each BH4 group equilibrate rapidly. Heating the complexes (I)–(VI) reduces the central atom, releases diborane, and decomposes the outer-sphere cation. The neutral borohydrides M(BH4)4, can be prepared by thermolysis of the sodium salts (I) and (II).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1207–1214, June, 1990.  相似文献   

18.
A fullerene derivative 1 of benzo[18]crown-6 was obtained by Diels-Alder addition of fullerene[60](C60) to the ortho-quinodimethane prepared in situ from 4,5-bis(bromomethyl)benzo[18]crown-6 ( 3 ) with Bu4NI in toluene. Extraction experiments show that the complexation of K+ ions strongly increases the solubility of 1 in protic solvents like MeOH. Using Langmuir-Blodgett techniques, monolayers of the highly amphiphilic fullerene-derived crown ether 1 and its K+ ion complex were prepared. An X-ray crystal structure was obtained from a benzene clathrate of comparison compound 2 , synthesized by Diels-Alder reaction of C60 with the ortho-quinodimethane derived from 1,2-bis(bromomethyl)-4,5-dimethoxybenzene ( 4 ). Both the fullerene molecule 2 and the benzene molecule are fully ordered in a crystal packing which is stabilized by intermolecular van-der-Waals contacts between the benzene ring and the C-spheres, intermolecular C…?C contacts between the C60 moieties, and intermolecular O…?C contacts between the O-atoms of the veratrole moieties and fullerene C-atoms.  相似文献   

19.
Polarization curves of electrochemical oxidation and reduction, as well as electronic absorption spectra of the palladium complex of fullerene, C60Pd(PPh3)2, and its mixtures with Pd(PPh3)4 have been studied in toluene-acetonitrile (9:1) solutions. The experimental data can be explained by the assumption that equilibrium takes place between the initial complex, polymetallated compounds, C60[Pd(PPh3)2]n (n=1–4), and free fullerene, C60.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2153–2158, December, 1994.This work was supported by the Russian Foundation for Basic Research, Project No. 93-03-18725.  相似文献   

20.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号