首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The purpose of this study is to analyse the combined heat and mass transfer of liquid film condensation from a small steam–air mixtures flowing downward along a vertical tube. Both liquid and gas stream are approached by two coupled laminar boundary layer. An implicit finite difference method is employed to solve the coupled governing equations for liquid film and gas flow together with the interfacial matching conditions. The effects of a wide range of changes of three independent variables (inlet pressure, inlet Reynolds number and wall temperature) on the concentration at exit tube, local Nusselt and Sherwood numbers, film thickness, accumulated condensate rate and temperature are carefully examined. The numerical results indicate that in the case of condensing a small concentration of vapours from a mixture, the resistance to heat and mass transfer by non-condensable gas becomes very intense. The comparisons of average Nusselt number and local condensate heat transfer coefficient with the literature results are in good agreement.  相似文献   

2.
This paper presents the experimental results of the local heat transfer for falling film evaporation of water sheet by solving the inverse heat conduction problem. It is shown that the local heat transfer coefficients increase by increasing the air flow velocity, the film liquid flow rate or decreasing the inlet bulk film temperature. Correlations for the mean heat transfer coefficients in the absence of superimposed flow for the stagnation region, the thermally developed region and the bottom of the heated cylinder are proposed.  相似文献   

3.
Numerical simulation of high-speed micro-droplet impingement on thin liquid film covering a heated solid surface has been carried out. Effect of droplet Weber number and liquid film thickness on the characteristics of flow and heat transfer has been investigated using the coupled level set and volume of fluid method. The code is validated against both the experimental and numerical results from the literature. Results show that the crown dynamics is mostly affected by variations in the initial film thickness but is weakly influenced by changes in the Weber number. The liquid within the film can be categorized as three regions based on the heat transfer distribution: the static film region, the transition region, and the impact region. The transient local wall temperature shows three stages: first stage when the temperature decreases rapidly, followed by a second stage in which the temperature starts to rise and then becomes almost constant in the third stage. After drop impact, the local Nusselt number continuously increases until reaching a maximum value, and then decreases approaching the initial impact stage. Our analysis of the change in Weber number shows that larger Weber number contributes to intense temperature variation at the crater core relative to other radial locations. Lastly, the results reveal that the thinner liquid film leads to lower wall temperature and hence, higher average Nusselt number.  相似文献   

4.
A contribution for clarifying the physical process in the evaporating part of a film-evaporation combustion-chamber is presented. Experimental and theoretical investigations are carried out for a flat vaporizing liquid film. The binary laminar boundary-layer flow including heat and mass transfer is calculated taking into account variable fluid properties. It is shown analytically and numerically and confirmed by the experiments, that the equations for momentum, energy and mass concentration yield “similar solutions” and that furthermore a 1/√x?law for the local evaporation velocity and a constant distribution of temperature and mass concentration at the film surface is obtained. The boundary-layer parameters and the influence of evaporation mass-flow are computed. A comparison with the experimental results shows good agreement.  相似文献   

5.
This work proposes a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels to update the widely used three-zone model of Thome et al. (2004). The heat transfer model has a convective boiling nature and predicts the time-dependent variation of the local heat transfer coefficient during the cyclic passage of a liquid slug, an evaporating elongated bubble and a vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method also considering bubble proximity effects, which may limit the radial extension of the film, is included. The minimum liquid film thickness at dryout is set to the channel wall roughness. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies. The 833 slug flow boiling data points cover the fluids R134a, R245fa and R236fa, and channel diameters below 1 mm. The proposed evaporation model predicts more than 80% of the database to within ±30%. It demonstrates a stronger contribution to heat transfer by the liquid slugs and correspondingly less by the thin film evaporation process compared to the original three-zone model. This model represents a new step towards a complete physics-based modelling of the bubble dynamics and heat transfer within microchannels under evaporating flow conditions.  相似文献   

6.
Film thickness measurements have been performed in a vertical air/water annular flow in a pipe of 0.05 m diameter. A sensor has been built which allows to measure the film thickness evolution in time at 320 positions, such that the interface of the vertical annular flow can be reconstructed. The large-scale structures moving on the interface are described statistically, with a special attention to the disturbance waves. Probability density functions and mean statistics are given for the height, length, velocity, frequency and spatial distribution of the disturbance waves. In particular, it is shown that the disturbance waves are three-dimensional structures with large height fluctuations in the circumferential and axial direction, giving a meandering path between the maximum height around the circumference. It is also shown that the disturbance waves can flow with a slight inclination with respect to the axial direction. Finally, the disturbance waves are shown to be located randomly in space, within a Gamma distribution whose order only depends on the liquid superficial velocity. Due to the nature of the Gamma distribution, it could indicate that the spatial distribution of the disturbance waves results from a cascade of coalescence processes between the original disturbance waves on the film.  相似文献   

7.
Heat transfer distribution in rectangular ducts with V-shaped ribs   总被引:1,自引:0,他引:1  
 Heat transfer distributions are presented for a rectangular duct with two opposite wide walls arranged with V-shaped ribs pointing upstream or downstream relative to the main flow direction. The rectangular duct has an aspect ratio of 1/8. The parallel V-shaped circular ribs are arranged staggered on the two wide walls. The rib height-to-hydraulic diameter ratio is 0.06, with an attack angle of 60°. The pitch-to-height ratio equals 10. The tested Reynolds numbers range from 1000 to 6000. The test surface is sprayed with black paint and then liquid crystal, and a steady state method is adopted to obtain the temperature distribution between adjacent ribs. The secondary flow caused by the angled ribs creates different spanwise variation of the heat transfer coefficient on the rib-roughened wall for different V-rib orientations. Interaction between heat transfer and secondary flow is analyzed. In the streamwise direction, the temperature distribution shows a sawtooth behavior between a pair of adjacent ribs. Local Nusselt numbers are presented between a pair of adjacent ribs, and based on these the average Nusselt numbers are calculated to investigate the augmentation of heat transfer by the presence of the V-shaped ribs. Received on 15 May 2000  相似文献   

8.
Heat transfer in a film flow of the FC-72 dielectric liquid down a vertical surface with an embedded 150×150 mm heater is experimentally examined in the range of Reynolds numbers Re = 5–375. A chart of liquid-film flow modes is constructed, and characteristic heat-transfer regions are identified. Data on the dependence of heater-wall temperature and local heat flux at the axis of symmetry of the heater on the longitudinal coordinate are obtained. Local and mean heat-transfer coefficients are calculated. It is shown that enhanced heat transfer is observed in the region where rivulets starts forming in the low-Reynolds-number liquid-film flow.  相似文献   

9.
Experimental data of the concentration field with high spatiotemporal resolution is required for the comprehension of mass transfer increasing kinetic phenomena in falling liquid films. For this purpose a non-invasive measuring method based on luminescence indicators is developed. It is used to determine the concentration distribution and the local film thickness simultaneously. First results are presented for the oxygen absorption into a laminar-wavy water film flowing down a plane with an inclination angle of 4° and a liquid side Reynolds number of 177. With the measured concentration distributions the effective diffusion coefficients are calculated at three points in a single wave of the film.  相似文献   

10.
Jet impingement boiling is very efficient in cooling of hot surfaces as a part of the impinging liquid evaporates. Because of its importance to many cooling procedures, investigations on basic mechanisms of jet impingement boiling heat transfer are needed. Until now, most of the experimental studies, carried out under steady-state conditions, used a heat flux controlled system and were limited by the critical heat flux (CHF). The present study focuses on steady-state experiments along the entire boiling curve for hot plate temperatures of up to 700°C. A test section has been built up simulating a hot plate. It is divided into 8 independently heated modules of 10 mm length to enable local heat transfer measurements. By means of temperature controlled systems for each module local steady-state experiments in the whole range between single phase heat transfer and film boiling are possible. By solving the two dimensional inverse heat conduction problem, the local heat flux and the corresponding wall temperature on the surface of each module can be computed. The measurements show important differences between boiling curves measured at the stagnation line and those obtained in the parallel flow region. At the stagnation line, the transition boiling regime is characterised by very high heat fluxes, extended to large wall superheats. Inversely, boiling curves in the parallel flow region are very near to classical ones obtained for forced convection boiling. The analysis of temperature fluctuations measured at a depth of 0.8 mm from the boiling surface enables some conclusions on the boiling mechanism in the different boiling regimes.  相似文献   

11.
The present paper deals with the numerical investigation of a 2D laminar fluid flow and heat transfer in a plane channel with two square blocks located at arbitrary positions. The numerical model is based on a coupling between the multiple relaxation time-lattice Boltzmann equation and the finite difference method for incompressible flow. Both the horizontal and the vertical separation distances between the two blocks are varied. Particular attention was paid to the distribution patterns of the time averaged local Nusselt number on the top and bottom walls. Results obtained from the present study show a complex flow patterns developed in the channel due to the change of the square blocks positions.  相似文献   

12.
High heat capacity and constant operation temperature make a 2-phase heat remover tool promising for solving high heat dissipation problems in MEMS devices. However, microscale analysis of the flow with the conventional Navier–Stokes equation is inadequate, because the non-continuum effect is important when the characteristic dimension is comparable to the local mean free path. DSMC is a direct, particle-based numerical simulation method that uses no continuum assumption. In this paper, the gas–liquid boundary effects in microchannel flow are studied using this method. Modified DSMC code is used to simulate low-speed flow—under which viscous heating produces no significant temperature change—and MD results are incorporated into the DSMC boundary condition. Steady Couette flow simulation results show that the gas–liquid boundary affects the density distribution and the temperature dependence of the slip velocity. Unsteady simulation results show that mass transfer by diffusion is faster than momentum transfer by collision.  相似文献   

13.
Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.  相似文献   

14.
Liquid–liquid slug flow offers the unique characteristics of high heat and mass transfer combined with a narrow residence time distribution in continuous flow and has thus attracted considerable attention in the field of microfluidics. To exploit its advantages in the successful design and operation of micro-reactors, a precise understanding of the mass transfer processes is essential. In the present work, the role of the thin continuous liquid film formed on the capillary wall in mass transfer is investigated. Fluorescence microscopy is used to determine the exchange between wall film and continuous phase segments to determine if the film is continuously renewed and can therefore be considered to contribute interfacial area available for mass transfer. The distinct wetting properties of different capillary materials are utilized in the experimental set-up to achieve a reproducible and non-invasive release of tracer. The degree of wall film mass transfer as a function of velocity, interfacial area and wall-film thickness is established.  相似文献   

15.
A non-intrusive optical technique was developed to provide time-resolved longitudinal and cross-sectional images of the liquid film in horizontal annular pipe flow of air and water, revealing the interfacial wave behavior. Quantitative information on the liquid film dynamics was extracted from the time-resolved images. The planar laser-induced fluorescence technique was utilized to allow for optical separation of the light emitted by the film from that scattered by the air–water interface. The visualization test section was fabricated from a tube presenting nearly the same refractive index as water, which allowed the visualization of the liquid film at regions very close to the pipe wall. Longitudinal images of the liquid film were captured using a high-frame-rate digital video camera synchronized with a high-repetition-rate laser. An image processing algorithm was developed to automatically detect the position of the air–water interface in each image frame. The thickness of the liquid film was measured at two axial stations in each processed image frame, providing time history records of the film thickness at two different positions. Wave frequency information was obtained by analyzing the time-dependent signals of film thickness for each of the two axial positions recorded. Wave velocities were measured by cross-correlating the amplitude signals from the two axial positions. For the film cross-section observations, two high-speed digital video cameras were used in a stereoscopic arrangement. Comparisons with results from different techniques available in literature indicate that the technique developed presents equivalent accuracy in measuring the liquid film properties. Time-resolved images of longitudinal and cross-section views of the film were recorded, which constitute valuable information provided by the technique implemented.  相似文献   

16.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

17.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

18.
The challenges that microchannel flow boiling technology faces are the lack of understanding of underlying mechanisms of heat transfer during various flow boiling regimes and a dearth of analytical models that can predict heat transfer. This paper aims to understand flow boiling heat transfer mechanisms by analyzing results obtained by synchronously captured high-speed flow visualizations with local, transient temperature data. Using Inverse Heat Conduction Problem (IHCP) solution methodology, the transient wetted surface heat flux and temperature as well as heat transfer coefficient are calculated. These are then correlated with the visual data. Experiments are performed on a single microchannel embedded with fast response temperature sensors located (630 µm) below the wetted surface. The height, width and length of the microchannel are 0.42 mm, 2.54 mm and 25.4 mm respectively. De-ionized, de-gassed water is used as the working fluid. Two heat fluxes are tested at each of the mass fluxes of 182 kg/(m2s) and 380 kg/(m2s). Because of vapor confinement, slug flow is observed for the tested conditions. The present study provides detailed insights into the effect of various events such as passage of vapor slug, 3-phase contact line, partial-dry-out and liquid slug on transient heat transfer coefficient. Transient heat transfer coefficient peaks when thin film evaporation mechanism is prevalent. The peak value is influenced by the distance of bubble incipience as well as downstream events obstructing the flow. Heat transfer coefficient during the passage of liquid slug and 3-phase contact line were relatively lower for the tested experimental conditions.  相似文献   

19.
We analyse the convection flow of a viscous fluid through a horizontal channel enclosing a fully saturated porous medium. The Galerkin finite element analysis is used to discuss the flow and heat transfer through the porous medium using serendipity elements. The velocity, the temperature distributions and the rate of heat transfer are analysed for variations in the governing parameters. The profiles at different vertical levels are asymmetric curves, exhibiting reversal flow everywhere except on the midplane. In a given porous medium, for fixed G or N, the temperature in the fluid region at any position in fluids with a higher Prandtl number, is much higher than in fluids with a lower Prandtl number. Likewise, other parameters being fixed, lesser the permeability of the medium, lower the temperature in the flow field. Nu reduces across the flow at all axial positions, while it enhances along the axial direction of the channel. Nu reduces with decrease in the Darcy parameter D, and thus lesser the permeability of the medium, lesser the rate of heat transfer across the boundary at any axial position of the channel.  相似文献   

20.
The flow and heat transfer in a laminar condensate flim on an isothermal vertical plate is modelled mathematically. The strict Boussinesq approximation is adopted to account for buoyancy due to local temperature variations within the film. A similarity transformation reduces the governing boundary-layer type equations to a coupled set of ordinary differential equations and the resulting three-parameter twopoint boundary value problem is solved numerically for Prandtl numbers,Pr, ranging from 0.001 to 1000 and Jakob numbers,Ja, between 0.0001 and 1.5. The principal effects of the favourable buoyancy are to reduce the thickness of the condensate film and increase the film velocity at the smooth liquid-vapour interface, whereas the friction and heat transfer at the plate are enhanced. In accordance with the classical Nusselt theory, it is found that the temperature varies nearly linearly across the film. The computed similarity profiles for velocity reveal, however, substantial departures from the parabolic distribution assumed in the simplified Nusselt analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号