首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of a CO2 laser to oscillate in the range of 16 (14) μm at room temperature was investigated experimentally and theoretically. The output energy per pulse was ~60 mJ at peak power of ~50 kW. It was necessary to minimize not only harmful losses but also useful ones in both channels 0001–0200 and 0200–0110 and to increase the input energy, i.e., the density of free electrons in the discharge, in order to increase the peak power and energy of 16-μm radiation. The highest values of peak power and energy of radiation were reached at different pressures of the active mixture. The rotational bottleneck effect limiting the peak power and energy of oscillation was important at rather low pressures of the active medium. Oscillation at the R12 line is more preferable than that at the P12 line for use as 9.6-μm dumping radiation.  相似文献   

2.
Utpal Nundy 《Pramana》2010,75(5):895-899
13.9 μm radiation from the 1000-0110 transition can be obtained from a CO2 laser by saturating the 0001-1000, 10.6 μm transition with an internally generated q-switched pulse or by the application of an external 10.6 μm pulse. Because of Fermi resonance between the symmetric stretch and the bending modes, decay of population from the 1000 level is fast, and such lasers operate at low power and energies. A theoretical model was developed to study such lasers. The results of the calculations indicate that a large-aperture E-beam-sustained discharge is effective for excitation of the cryogenically cooled gain medium, which uses He rich mixture at low pressure. The system is scalable and capable of generating large powers and energies.  相似文献   

3.
4.
New experimental results in support of the universal mechanism of “cold” laser ablation for machining of various commercial green ceramic materials (LTCC) are presented in this paper. The “cold” ablation model was mathematically formulated and employed to derive an ablation curve equation. The model was tested by CO2 laser ablation of a custom-made green-state alumina ceramic featuring varying binder content. An excellent fit of ablation curve to experimental data was obtained, yielding insight into process energetics and an ablative measurement method of absorption coefficient. The analysis was applied to a sample of commercial LTCC materials. The ablation results were practically identical for all materials in agreement with the prediction of the model, with the high rates of >100 micron/shot at repetition >1 kHz and accuracy comparable with the ceramic grain size. This work provides evidence that the CO2 laser processing has a great potential to become a key low-cost precision processing method for the existing LTCC-based electronic devices (micro-via drilling, general cutting and scribing) and for the new generation of LTCC-based devices comprising micro-fluidics, micro-mechanics, opto-electronics and meta-material structures.  相似文献   

5.
Analysis of the experimental data on the solubility of methylxanthines (theophylline and theobromine) in supercritical (SC) solvent CO2–methanol at various concentrations of methanol within the framework of the ASL model (Associated Solution + Lattice) based on molecular association theory and the simple lattice model is presented. Hetero-association of methylxanthines with the molecules of methanol is studied by means of 1H NMR spectroscopy at 313 K. The contribution of molecular association to the solubility of methylxanthines in the mixed SC solvent CO2–methanol is analyzed. It is shown that the presence of NH group in the molecule of methylxanthine, when passing from caffeine to theophylline or theobromine, leads to an increase of the contribution of the component related to molecular association to solubility.  相似文献   

6.
The caffeine–methanol association constant at 313 K has been determined by 1H NMR spectroscopy. The caffeine solubility in the supercritical carbon dioxide (SC-CO2)–methanol mixed solvent has been calculated using the association constant experimentally measured by NMR in the framework of the associated solution + lattice (ASL) model, which is based on the theory of molecular association and a simple lattice model. Individual contributions to the solubility have been determined, and the relative role of various factors determining the solubility of caffeine in the mixed solvent has been analyzed. The caffeine solubility as a function of the methanol content of the SC-CO2–methanol system is predicted to pass through a maximum.  相似文献   

7.
We have employed a CO2-laser/microwave-sideband spectrometer to carry out saturation-dip sub-Doppler measurements of a number of 22 overtone transitions of OCS in the 10-m region. The OCS frequencies have been obtained with an absolute accuracy of order ±37 kHz, as determined from a careful analysis of the combined uncertainties in the frequency of our Lamb-dip-locked laser and the centers of the observed OCS saturation signals. Our ±37 kHz measurement accuracy is consistent with literature OCS sub-Doppler data obtained on a similar instrument. The results serve to extend the comb of precise reference frequencies in the 10-m region and to determine the magnitudes of systematic and random uncertainties of our CO2 laser. PACS 07.57.Ty; 33.20.Ea; 42.62.Fi  相似文献   

8.
The structural characteristics, valence states, and distribution of cerium ions between the components in In2O3–CeO2 and SnO2–CeO2 nanocomposites fabricated using the impregnation method were studied. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were used to show that, during impregnation, cerium ions are not included into In2O3 crystals and are disposed only on their surface in the form of nano-sized crystallites or amorphous clusters. On the other side, under the contact of CeO2 clusters with a surface of SnO2 matrix crystals, cerium ions penetrate into the surface layer of these crystals. In contrast to an In2O3–CeO2 system, where the addition of CeO2 does not affect the conduction activation energy, where cerium oxide is added to SnO2, the observed increase in the resistance of a SnO2–CeO2 composite is accompanied by a sufficient increase in activation energy. These data and the XPS spectra confirm the modification of the surface layers of conductive SnO2 crystals as, a result of the penetration of cerium ions into these layers.  相似文献   

9.
The reactive uptake of NO3 radicals on the surface of wetted individual X salts and of wetted X-NaCl salts (X = MgCl2 · 6H2O and MgBr2 · 6H2O) at [H2O] = 2 × 1012−2 × 1015 cm−3 and NO3 (4.8 × 1012 cm−3) was studied using a reactor with a movable insert covered with a salt coating in combination with a mass spectrometer for monitoring the initial reactant and products. The probabilities of NO3 uptake γ on X-NaCl binary salts as functions of the content of doping salt were determined. A parametric approximation of the experimental data was proposed, which makes it possible to quantitatively predict the extent of surface enrichment of a wetted binary salt coating in doping salt and its dependence on the humidity and the content of this salt in the binary mixture. It was established that the relative surface density σX of X doping salt depends on its mole fraction μX in the X-NaCl binary salt as σX = aμX (a = 2.2 for MgBr2 and 13.1 for MgCl2) over the entire humidity range covered. The contributions of the X salts to the overall uptake of NO3 at NO3 concentration typical of the tropospheric conditions ([NO3] ∼ 107 cm−3 and relative humidities of RH ≤ 20%) were estimated.  相似文献   

10.
11.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

12.
A mathematical model of thermomechanical processes in the output window of a high-power continuous gas laser is developed and used to examine the windows of a СО2 laser. The dependence of the maximum allowed output radiation power on the beam diameter and the distributions of temperatures and mechanical stresses are obtained, and the divergence of radiation is studied for windows made from ZnSe, KCl, and polycrystalline diamond (PD). In addition, the damage threshold of a composite output window made from PD with a single-crystalline region at the center is considered.  相似文献   

13.
14.
15.
16.
17.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

18.
Direct comparison of the properties of a thin surface layer and the bulk of macroscopic hematite (α-Fe2O3) crystals was used to study the magnetic structure of the surface layer and the bulk and the processes attendant on spin-reorientation phase transition (SRT). The investigation tool was simultaneous γ-ray, X-ray, and electronic Mössbauer spectroscopy, which enabled us to study the bulk and surface properties of macroscopic samples simultaneously and to compare them directly. Direct evidence of the existence of a surface “transition layer” on hematite crystals is obtained. The existence of this layer was suggested and described by Krinchik and Zubov [JETP 69, 707 (1975)]. The study in the SRT region showed that (1) the Morin SRT in the crystal bulk occurs in a jump (as a first-order phase transition), whereas in the surface layer of about 200 nm thick, some smoothness appears in the mechanism of magnetic-moment reorientation; (2) SRT in the surface layer, as in the bulk, involves an intermediate state in which low-and high-temperature phases coexist; and (3) SRT in the surface layer occurs at a temperature several degrees higher than in the bulk. Our experimental evidence on the SRT mechanism in the surface layer correlates with the inferences from phenomenological theory developed by Kaganov [JETP 79, 1544 (1980)].  相似文献   

19.
Powders of the B-type synthetic apatite exposed to gamma or ultraviolet irradiation were investigated using EPR spectroscopy. It was shown that ultraviolet irradiation leads to the appearance of the EPR spectrum near g = 2, which is similar to the spectrum observed upon gamma irradiation. The decomposition of the EPR spectra into components and the simulation of the shape of the experimental EPR signals revealed that these signals are associated primarily with two types of CO 2 ? radicals, namely, the axial CO 2 ? radicals and the orthorhombic CO 2 ? radicals. The differences in the shapes of the EPR spectra of the samples exposed to gamma and ultraviolet irradiation were explained by different ratios between the axial and orthorhombic CO 2 ? radicals. It was established that thermal annealing results in an increase in the relative contribution to the total EPR spectrum. This increase was explained by the transformation of the orthorhombic radicals into the axial radicals.  相似文献   

20.
Self-consistent calculations using the D1S Gogny force have been performed in order to study the mechanism involved in the crossing of the πd 5/2 and πg 7/2 orbitals in the Sb isotopes. This inversion is well predicted by the HFB + blocking calculations with spherical symmetry performed for the odd-A Sb isotopes. In addition, several HFB and HF calculations have been performed for even-even nuclei of the five neighbouring isotopic chains (Z = 46 to 54, from the proton dripline to N = 82). The results obtained for the binding energies of the two proton orbitals indicate that the radii of the systems play an important role in the crossing, even though some particular πν interactions also give a contribution. The spin-orbit interaction, which is known to be concentrated mainly at the nuclear surface, is proposed to be the main responsible of the crossing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号