首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach for the analysis of large-volume naphthalene-2,3-dicarboxaldehyde (NDA) derivatives of amino acids by micellar electrokinetic chromatography (MEKC) in conjunction with a purple light-emitting diode-induced fluorescence detection is described. In order to optimize resolution, speed, and stacking efficiency, a discontinuous condition is essential for the analysis of NDA-amino acid derivatives. The optimum conditions use 2.0M TB (pH 10.0) buffer containing 40mM sodium dodecyl sulfate (SDS) to fill the capillary, deionized water to dilute samples, and 200mM TB (pH 9.0) containing 10mM SDS to prepare 0.6% poly(ethylene oxide) (PEO). Once high voltage is applied, PEO solution enters the capillary via electroosmotic flow and SDS micelles interact and thus sweep the NDA-amino acid derivatives having smaller electrophoretic mobilities than that of SDS micelles in the sample zone. When the aggregates between SDS micelles and NDA amino acid derivatives enter PEO zone, they are stacked due to decrease in electric field and increases in viscosity. Under the optimum conditions, the concentration and separation of 0.53-microL 13 NDA-amino acid derivatives that are negatively charged has been demonstrated by using a 60-cm capillary, with the efficiencies 0.3-9.0x10(5) theoretical plates and the LODs at signal-to-noise ratio 3 ranging from 0.30 to 2.76nM. When compared to standard injection (30-cm height for 10s), the approach allows the sensitivity enhancements over the range of 50-800 folds for the derivatives. The new approach has been applied to the analysis of a red wine sample, with great linearity of fluorescent intensity against concentrations (R(2)>0.98) and the RSD (three repetitive runs in one day) values of the migration times for the ten identified amino acids less than 2.8%.  相似文献   

2.
Proteins were concentrated and separated in 0.6% poly(ethylene oxide) (PEO) solution using a capillary filled with Tris-borate (TB) buffer prior to analysis and detected by laser-induced native fluorescence using a pulsed Nd:YAG laser. During the concentration and separation, PEO solution entered the capillary by electroosmotic flow. When proteins dissolved in high salts (phosphate-buffered saline) were separated using 0.6% PEO solution prepared in 200 mM TB buffer, pH 9.0, the limits of detection (LODs) at signal-to noise ratios=3 for carbonic anhydrase (CA) and alpha-lactalbumin (alpha-lac) were on the levels of sub microM and microM, respectively. The LOD values compared to those obtained in 38 mM TB buffer were relatively high, which is likely due to salt quenching, Joule heating and poor stacking. To improve sensitivity for analysis of proteins in high-conductivity media, two on-line concentration approaches without desalting were developed. When using a capillary filled with 1.5 M TB buffer, pH 10.0, and PEO solution prepared in 800 mM TB buffer, pH 9.0, the LOD values for CA and alpha-lac were 13.8 nM and 126.0 nM, respectively, which were about 4.7 and 11.2-fold sensitivity enhancements compared to those obtained by a conventional hydrodynamic injection (30 cm height for 10 s), respectively. The sensitivity was further improved by injecting a short plug of low pH buffer after protein injection using a capillary filled with 1.5 M TB buffer, pH 10.0, and PEO solution prepared in 400 mM TB buffer, pH 9.0. A linear relationship between the peak height and the injection volume up to 0.81 microl was obtained and the LOD values for CA and alpha-lac were down to 4.7 and 37.8 nM.  相似文献   

3.
Tseng WL  Chang HT 《Electrophoresis》2001,22(4):763-770
DNA separations were performed in poly(ethylene oxide) (PEO) solutions prepared in 100 mM Tris-boric acid (TB) buffers using a capillary filled with TB buffers with concentrations up to 2.5 M, pH 10.0. The electroosmotic flow (EOF) increased with increasing the concentration of TB buffers till 1.5 M as a result of decreasing PEO adsorption on the capillary wall. At high TB concentrations (> 1.5 M), the peaks corresponding to small DNA fragments (11 and 8 base pairs) became sharper and were detected. Relative standard deviations of the EOF coefficient and the migration times of the DNA fragments were all less than 1% using a capillary filled with TB buffers at concentrations higher than 1.5 M. When separations were performed at different pH values of PEO solutions and TB buffers, better results in terms of sensitivity, speed, and resolution were generally achieved. The fluorescence intensity of the 2176 bp fragment obtained at pH values of TB buffers/PEO solutions 10.0/8.2 was 27-fold of that at pH values 8.2/8.2. The enhancement was related to effects of pH and borate on fluorescence intensity, DNA conformation, stacking, and interactions with the capillary wall. Using a capillary filled with 400 mM TB buffers, pH 10.0, the separation of DNA (pBR 322/HaeIII digest, pBR 328/Bg/I digest and pBR 328/HinfI digest) in 1.5% PEO solutions prepared in 100 mM TB buffers, pH 9.0, at 375 V/cm was accomplished in less than 18 min.  相似文献   

4.
We describe simultaneous analysis of naphthalene-2,3-dicarboxaldehyde (NDA)-amino acid and amine derivatives by capillary electrophoresis in conjunction with light-emitting diode-induced fluorescence (LEDIF) detection using poly(ethylene oxide) (PEO) containing cetyltrimethylammonium bromide (CTAB). In the presence of CTAB and acetonitrile (ACN), adsorption of PEO on the capillary wall is suppressed, leading to generation of a fast and reproducible electroosmotic flow (EOF). In order to optimize separation resolution and speed, 100 mM Tris–borate solution (pH 7.0) containing 20 mM CTAB and 25% ACN was used to fill the capillary and to prepare 1.2% PEO that entered the capillary via EOF. The analysis of 14 NDA-amino acid and -amine derivatives by this approach is rapid (< 4 min), efficient ((0.9–6.4) × 105 theoretical plates), and sensitive (the LODs (S/N = 3) range from 9.5 to 50.5 nM). The RSD values (n = 5) of the migration times and peak heights of the analytes for the intraday analysis are less than 1.5 and 1.2%, respectively. We have validated the practicality of this approach by quantitative determination of 10 amino acids and amines in a beer samples within 4 min.  相似文献   

5.
We describe simultaneous analysis of naphthalene-2,3-dicarboxaldehyde (NDA)-amino acid and NDA-biogenic amine derivatives by CE in conjunction with light-emitting diode-induced fluorescence detection using poly(ethylene oxide) (PEO) solutions containing sodium dodecyl sulfate (SDS). After sample injection, via EOF 0.1% PEO prepared in 100 mM TB solution (pH 9.0) containing 30 mM SDS entered a capillary filled with 0.5 M TB solution (pH 10.2) containing 40 mM SDS. Under this condition, 14 NDA-amino acid and NDA-amine derivatives were separated within 16 min, with high efficiency ((1.0–3.2) × 105 theoretical plates) and sensitivity (LODs at S/N = 3 ranging from 2.06 to 19.17 nM). In the presence of SDS and PEO, analytes adsorption on the capillary wall was suppressed, leading to high efficiency and reproducibility. The intraday analysis RSD values (n = 3) of the mobilities for the analytes are less than 0.52%. We have validated the practicality of this approach by quantitative determination of 9 amino acids in breast cancer cells (MCF-7) and 10 amino acids in normal epithelial cells (H184B5F5/M10). The concentrations of Tau and Gln in the MCF-7 cells were different than those in the H184B5F5/M10 cells, respectively. Our results show the potential of this approach for cancer study.  相似文献   

6.
Chiou SH  Huang MF  Chang HT 《Electrophoresis》2004,25(14):2186-2192
The separation of DNA by capillary electrophoresis using poly(ethylene oxide) (PEO) containing gold nanoparticles (GNPs) is presented. The impacts of PEO, GNPs, ethidium bromide (EtBr), and pH on the separation of double-stranded DNA have been carefully explored. Using a capillary dynamically coated with 5.0% poly(vinylpyrrolidone) and filled with 0.2% PEO containing 0.3 x GNPs (the viscosity less than 15 cP), we have demonstrated the separation of DNA markers V and VI within 5 min at pH 8.0 and 9.0. In terms of resolution and reproducibility, GNPs have a greater impact on the separation of DNA at pH 9.0. Resolution improvements for large DNA fragments (> 300 base pairs, bp) are greater than those for small ones in the presence of GNPs. It is important to point out that reproducibility is excellent (relative standard deviations for the migration times less than 0.5%) and thus no further dynamic coating is required in at least 20 consecutive runs in the presence of GNPs. Using 0.2% PEO (pH 9.0) containing 0.3 x GNPs, the separation of DNA fragments ranging in size from 21 to 23,130 bp was accomplished in 7 min. The results presented in this study show the advantage of PEO containing GNPs for DNA separation, including rapidity, high resolving power, excellent reproducibility, and ease of filling capillaries.  相似文献   

7.
CE conditions for monitoring the unsaturated disaccharides of hyaluronic acid (di-HA) and chondroitin sulfate (di-CS) using an alkaline tetraborate buffer, electrokinetic sample injection, and UV absorption detection at 232 nm are reported. Separations were performed in an uncoated fused-silica capillary having reversed polarity and reversed electroosmosis generated with the addition of CTAB to the buffer. The influence of various separation parameters, including the concentration of CTAB, buffer pH, concentration of tetraborate, and applied voltage, on the resolution of the two disaccharides was investigated. Baseline separation was obtained with 25 mM tetraborate at pH 10.0 and having 0.05 mM CTAB. Chloride and phosphate in the sample are beneficial for the stacking of the disaccharides, with di-HA forming a much sharper peak than di-CS. Using samples prepared in 25 mM Tris-HCl (pH 7.5) and electrokinetic injection at the cathode at -10 kV for 40 s, linear relationships between the corrected peak area and the concentration of the disaccharides have been found in the ranges of 1.0-400.0 and 0.1-1.0 microg/mL (0.2-1.0 microg/mL for di-CS), with correlation coefficients being >0.9933 in all cases. The RSDs of detection times and corrected peak areas were between 1.13-1.24 and 1.57-2.13%, respectively. Applied to human serum samples that were prepared by ethanol precipitation and depolymerization of the two polysaccharides with chondroitinase ABC reveals comigration of endogenous compounds with di-HA and a sample-dependent detection time. The di-HA content in the serum sample can be estimated via subtraction of the blank peak that is obtained without enzymatic hydrolysis.  相似文献   

8.
We describe the stacking and separation of d- and l-aspartic acid (Asp) by capillary electrophoresis (CE) with light-emitting diode-induced fluorescence detection (LEDIF). In the presence of cyanide, d- and l-Asp were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) to form fluorescent derivatives prior to CE-LEDIF. The separation of NDA-derivatized d- and l-Asp was accomplished using a discontinuous system - buffer vials contained a solution of 0.6% poly(ethylene oxide) (PEO), 150 mM sodium dodecyl sulfate (SDS), and 60 mM hydroxypropyl-β-cyclodextrin (Hp-β-CD), while a capillary was filled with a solution of 150 mM SDS and 60 mM Hp-β-CD. The role of PEO, Hp-β-CD, and SDS is to act as a concentrating media, as a chiral selector, and as a pseudostationary phase, respectively. This discontinuous system could be employed for the stacking of 600 nL of NDA-derivatized d- and l-Asp without the loss of chiral resolution. The stacking mechanism is mainly based on the difference in viscosity between sample zone and PEO as well as SDS sweeping. The limits of detection at signal-to-noise of 3 for d- and l-Asp were down to 2.4 and 2.5 × 10−10 M, respectively. Compared to normal sample injection volume (25 nL), this stacking approach provided a 100- and 110-fold improvement in the sensitivity of d- and l-Asp, respectively. This method was further applied for determining d- and l-Asp in cerebrospinal fluid, soymilk, and beer.  相似文献   

9.
Simultaneous separation and quantification of seven parabens commonly used as preservatives in cosmetic products, by micellar electrokinetic chromatography with a stacking technique has been demonstrated. An effective on‐line concentration strategy involving a combination of sweeping and the use of polymer solutions is a key feature of the proposed method, which successfully determined individual parabens. The analysis parameters such as injection time, pH and concentration of phosphate solution, and concentration of sodium dodecyl sulphate (SDS) and poly(ethylene oxide) (PEO) were examined. The optimum conditions were found to be as follows: a 15 mM phosphate solution (pH 9.5) containing 20 mM SDS for filling the capillary, and for the separation electrolytes, 0.100% PEO (8 MDa) added to the phosphate and SDS solution of the same composition as for the capillary. The entire analysis process was completed in 13 min and a 930‐2200‐fold enhancement factor was achieved. The LODs (S/N = 3) for this approach were in the range from 4.32 to 7.78 nM. The linear range for each paraben was between 50 nM and 5.0 μM (R2 > 0.990). The optimized method was then successfully applied to the determination of parabens in commercial cosmetic products.  相似文献   

10.
Riaz A  Chung DS 《Electrophoresis》2005,26(3):668-673
Transient isotachophoresis (TITP) is usually performed under low-electroosmotic flow (EOF) conditions using a coated capillary or a low pH background electrolyte. We used a bare fused-silica capillary for TITP stacking of anionic complexes of some heavy metals under high-EOF conditions (pH 9.0). The sample component chloride as a leading electrolyte induced stacking by an isotachophoretic mechanism and the complexing agent 4-(2-pyridylazo) resorcinol (PAR) acted as a terminating electrolyte. The optimized background electrolyte was composed of 150 mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid, 127 mM triethylamine, and 0.1 mM PAR at pH 9.0. The strong EOF at pH 9.0 pulled the analytes against their mobilities toward the outlet side, allowing a separation in the normal polarity mode. The stacking efficiency, reproducibility, analysis time, and sample loading capacity in coated and bare capillaries were compared. The stacking efficiency and reproducibility were higher and the analysis time was shorter in the coated capillary. However, a larger volume of a sample could be injected in the bare capillary to achieve detection limits comparable to those for the coated one without compromising the resolution between the analyte peaks. The limits of detection (S/N = 3) were in the sub-ppb range for the selected metals (Fe2+, 0.3 ppb; Ni2+, 0.16 ppb; and Zn2+, 0.8 ppb) in a standard saline sample with 250 mM NaCl matrix. The proposed method was successfully applied to the analysis of reference urine samples and human urine samples.  相似文献   

11.
Qin W  Li SF 《Electrophoresis》2003,24(12-13):2174-2179
This report describes separation and detection of chlorophenoxy acid herbicides spiked in drinking water by the technique combining solid-phase extraction, field-amplified sample stacking, capillary electrophoresis, and potential gradient detection. The herbicide solution (400 mL) was concentrated to 0.1 mL by the solid-phase extraction procedure. The buffer containing 3 mM ammonia and 0.3 mM hydroxypropyl-beta-cyclodextrin was adjusted to pH 9.0 with ammonia. The sample solution was injected into the capillary to 30% of the whole length, and -9 kV and 9 kV were employed for field-amplified sample stacking and separation, respectively. The herbicides were baseline separated and the detection limits with the above combined techniques were in the range of 1-4 x 10(-2) ng/mL.  相似文献   

12.
The impact of hexadecyltrimethylammonium bromide (CTAB) on the separation of ds-DNA by capillary electrophoresis in conjunction with laser-induced fluorescence (CE-LIF) detection using poly(ethylene oxide) (PEO) solution is described. The use of CTAB for improved separation reproducibility and efficiency of DNA has not been demonstrated although it is widely used for controlling the magnitude and direction of electroosmotic flow in CE. With increasing CTAB concentration, the interactions of DNA with ethidium bromide (EtBr) and with the capillary wall decrease. For the separation of DNA fragments with the sizes ranging from several base pairs (bp) to 2,176 bp, a polymer solution consisting of 0.75% poly(ethylene oxide), 100 mM TB buffer (pH 8.0), 25 microg/mL EtBr, and 0.36 microg/mL CTAB is proper. Using the PEO solution, we separated a mixture of DNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/BglI digest and pBR 328/HinfI digest) within 8 min at -375 V/cm, with the limit of detection of 2.0 ng/mL based on the peak height for the 18-bp DNA fragment. The method is highly efficient (>10(6)plate/m), repeatable (RSD of the migration times <1.5%), and sensitive. In addition, it is convenient to fill a capillary (75 microm in diameter) with such a low-viscosity PEO solution by syringe pushing.  相似文献   

13.
Capillary electrophoresis (CE) is a powerful technique for enantiomer separations due to its intrinsic high separation efficiencies, speed of analysis, low reagent consumption and small sample requirements. However, some chiral selectors present strong background UV absorption providing high detection limits. The present paper deals with the application of the partial-filling technique to the separation of bupivacaine enantiomers by capillary electrophoresis using human serum albumin (HSA) as chiral selector. In this procedure the cationic surfactant cetyltrimethylammonium bromide (CTAB) was used as a dinamic capillary coating in order to reduce the electro-osmotic flow and detect both bupivacaine enantiomers out of the chiral selector plug. Several experimental conditions such as CTAB concentration, pH, HSA concentration and plug length, background electrolyte concentration, temperature and voltage were studied. Under the selected conditions it is possible to detect the separated enantiomers out of the HSA plug in less than 4 min using 50 mM Tris pH 8 as background electrolyte with 50 microM CTAB, at 30 degrees C and using a separation voltage of 25 kV. The proposed methodology was then validated for analytical purposes and applied to the analysis of pharmaceutical preparations commercially available. The results obtained with the proposed methodology were in good agreement with those declared by the manufacturers. The simplicity, sample throughput, accuracy, reproducibility and low cost of the proposed method make it suitable for the control of the enantiomeric composition of bupivacaine in pharmaceuticals.  相似文献   

14.
The separation of tylosin by micellar electrokinetic capillary chromatography with a mixed micelle system is described. Good selectivity was obtained with sodium phosphate buffer (80 mM, pH 7.5) containing 20 mM sodium cholate and 7 mM cetyltrimethylammonium bromide (CTAB). This method permits tylosin to be separated from its closely related substances within 15 min. The influences of type of buffer, buffer pH, the concentrations of sodium cholate and CTAB were investigated. The robustness of the method was examined for tylosin by means of a full-fraction factorial design. Quantitative results are presented. Using a similar buffer system (80 mM sodium phosphate, pH 6.0, 20 mM sodium cholate and 5 mM CTAB), separation of erythromycin and its main related substances was also obtained. However, detection sensitivity and resolution are not sufficient for analysis of related substances in erythromycin commercial samples.  相似文献   

15.
DNA separations in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO) solutions have been demonstrated. During the separations, PEO entered capillaries filled with Tris-borate (TB) free buffers by EOF and acted as sieving matrices. We have found that ionic strength and pH of polymer and free solutions affect the bulk EOF and resolution differently from that in capillary zone electrophoresis. The EOF coefficient increases with increasing ionic strength of the free TB buffers as a result of decreases in the adsorption of PEO molecules. In contrast, the bulk EOF decreases with increasing the ionic strength of polymer solutions using capillaries filled with high concentrations of free TB buffers. Although resolution values are high due to larger differential migration times between any two DNA fragments in a small bulk EOF using 10 mM TB buffers, use of a capillary filled with at least 100 mM TB free buffers is suggested for high-speed separations. On the side of PEO solutions, 1.5% PEO solutions prepared in 100 to 200 mM TB buffers are more proper in terms of resolution and speed. The separation of DNA markers V and VI was accomplished less than 29 min in 1.5% PEO solutions prepared in 100 mM TB buffers, pH 7.0 at 500 V/cm using a capillary filled with 10 mM free TB buffers, pH 7.0.  相似文献   

16.
A transient micellar phase extractor using CTAB was described for the online sample concentration of various anionic analytes (drugs and herbicides) in CE. Stacking and separation was performed at neutral pH in coelectroosmotic flow in a hexadimethrine bromide coated fused‐silica capillary. A micellar plug (e.g. 10 mM CTAB) was injected prior to hydrodynamic injection of the analytes prepared in aqueous organic solvent (e.g. with 30% ACN). In the presence of an electric field, the micelles interacted with the anions inside the capillary. This was followed by selective analyte focusing via the mechanism of micelle to solvent stacking. The micelles acted as transient extractor because the stacking ends when the injected micelles completely migrated through the boundary between the sample and micellar plug. Fundamental studies were performed (effect of surfactant concentration, etc.) and the technique yielded 13‐ to 30‐fold improvements in peak height. A stacking CE method in conjunction with liquid–liquid extraction was also tested for the detection of the herbicides fenoprop and mecoprop in fortified drinking water at analyte concentration levels relevant to Australian Drinking Water Guidelines.  相似文献   

17.
In the present work, a 2-D capillary liquid chromatography method for fractionation and separation of human salivary proteins is demonstrated. Fractionation of proteins according to their pI values was performed in the 1-D employing a strong anion exchange (SAX) column subjected to a wide-range descending pH gradient. Polystyrene-divinylbenzene (PS-DVB) RP columns were used for focusing and subsequent separation of the proteins in the 2-D. The SAX column was presaturated with a high pH buffer (A) consisting of 10 mM amine buffering species, pH 9.0, and elution was performed with a low pH elution buffer (B) having the same buffer composition and concentration as buffer A, but pH 3.5. Isoelectric point fractions eluting from the 1-D column were trapped on PS-DVB trap columns prior to back-flushed elution onto the PS-DVB analytical column for separation of the proteins. The 1-D fraction eluting at pH 9.0-8.7 was chosen for further analysis. After separation on the RP analytical column, nine RP protein fractions were collected and tryptic digested for subsequent analyses by MALDI TOF MS and column switching capillary LC coupled to ESI TOF MS and ESI QTOF MS. Eight proteins and two peptides were identified in the pH 9.0-8.7 fraction using peptide mass fingerprinting and uninterpreted MS/MS data.  相似文献   

18.
We have demonstrated on-line concentration and separation of DNA in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO) solutions. After injecting large-volumes DNA samples, PEO solutions entered a capillary filled with 400 mM Tris-borate (TB) buffers by EOF and acted as sieving matrices. DNA fragments stacked between the sample zone and PEO solutions. Because sample matrixes affected PEO adsorption on the capillary wall, leading to changes in EOF, migration time, concentration, and resolving power varied with the injection length. When injecting phiX174 RF DNA-HaeIII digest prepared in 5 mM Tris-HCl buffer, pH 7.0, at 250 V/cm, peak height increased linearly as a function of injection volume up to 0.9 microl (injection time 150 s). The sensitivity improvement was 100-fold compare to that injected at 25 V/cm for 10 s (0.006 microl). When injecting 1.54 microl of GeneScan 1000 ROX, the sensitivity improvement was 265-fold. The sensitivity improvement was 40-fold when injecting 0.17 microl DNA sample containing pBR 322/HaeIII, pBR 328/BglI, and pBR 328/HinfI digests prepared in phosphate-buffered saline. This method allows the analysis of polymerase chain reaction (PCR) products amplified after 17 cycles when injecting 0.32 microl (at 30 cm height for 300 s). The total analysis time was shorter (91.6 min) than that (119.6 min) obtained from injecting PCR products after 32 cycles for 10 s.  相似文献   

19.
Kuo IT  Chiu TC  Chang HT 《Electrophoresis》2003,24(19-20):3339-3347
We describe the separation of dsDNA by capillary electrophoresis in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO). Using 1.0% PEO, the separation of DNA fragments with sizes ranging from 51 bp to 23 kbp has been achieved in less than 12 min, which is better than conventional methods (in the absence of EOF) in terms of speed and resolution. In order to concentrate and separate the DNA sample, gradient changes in the concentrations of PEO and ethidium bromide (EtBr) have been conducted. Different concentrations of PEO solutions are injected to the polyethylene tubes by pressure, where they enter the capillary by EOF. Because the large DNA fragments migrate faster towards the cathode end under counterflow conditions, the introduction sequence is from low to high concentrations of PEO solutions after sample injection. Using the gradient CE approach, the separations of the DNA sample injected at 30 cm height for times up to 120 s have been demonstrated. The linearity between injection time and peak height shows that the DNA fragments stacked during migration from the sample zone to PEO. We found that stacking efficiency is greater when the analysis was performed by simultaneously changing the PEO and EtBr concentration, compared to individual changes in PEO concentration.  相似文献   

20.
Belin GK  Erim FB  Gülaçar FO 《Talanta》2006,69(3):596-600
The separation of different ring numbered polyaromatic hydrocarbons (PAHs) was accomplished by using cetyltrimethylammonium bromide (CTAB) in capillary electrokinetic chromatography. In order to increase the solubilities and selectivities of PAHs, acetonitrile (ACN) was used as an organic modifier. Under the optimised conditions, 11 aromatic compounds were separated within 14.5 min in a running electrolyte containing 10 mM phosphate, 30 mM CTAB, and 40% ACN at pH 6.0. The effects of CTAB and ACN concentrations, voltage and pH on the resolution were investigated. Reproducibilities of migration times range between 0.55 and 1.27 R.S.D.% and peak areas between 1.02 and 7.23 R.S.D.%. Limit of detections (LODs) range between 0.09 and 2.24 μg ml−1. This new and fast separation method of PAHs was applied to cooked oil sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号