首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly nonlinear laser–matter interaction conditions produced by high-intensity amplified ultra-fast laser pulses have proven to be beneficial in the processing of normally transparent wide-band-gap dielectric materials. This article presents experimental studies of the ultra-fast laser absorption process in three wide-band-gap dielectrics: fused silica, calcium fluoride, and sapphire. Time-resolved measurements of the probe transmissivity and reflectivity show both the formation of dense free-electron plasma at the surface due to nonlinear absorption of the laser pulses and rapid structural damage on the order of a few picoseconds. Pump–probe data with intense pump and probe pulses was also correlated to atomic force microscopy measurements of the ablated volume. It was observed that the material removal peaked near zero delay between the pulses and decreased within a temporal separation of about 1 ps. PACS 52.38.Mf; 78.47.+p; 79.20.Ds  相似文献   

2.
The dynamics of absorption after excitation of fused silica and BK7 glass with femtosecond laser radiation are visualized by transient absorption spectroscopy. Focusing laser radiation with pulse durations in the picosecond time regime in BK7 glass generates free electrons with relaxation by emission of radiation or by formation of defects. The temporal and spatial emission characteristics are observed by high-speed photography in the streak mode. The beam waist moves within the pulse duration towards the incoming laser radiation by self-focusing and with the laser radiation absorbed by multi-photon processes. The dynamics of the long lasting stress formation is visualized by time-resolved Nomarski-Photography. The modification of the glass is investigated during and after irradiation with ultra-short pulsed laser radiation (100 fs<tp<3 ps) at the wavelength =810 nm. The formation of a sound wave in fused silica and BK7 glass is observed and the mechanical stress, depending on the excitation pulse duration, is measured. PACS 06.60.Jn; 42.50.Md; 78.47.-p; 81.16.-c; 82.53.-k  相似文献   

3.
We present results describing several characteristics of energy coupling into dielectric materials (fused silica) irradiated by ultrashort laser pulses in a regime close to the surface optical breakdown threshold. The results intend to illustrate the energy balance in the interaction process by observing the spatio-temporal variations of a laser pulse transversing a dielectric slab as a function of its energy. The measurements are based on real-time observations of the self-action of the laser pulse and associated effects on its temporal envelope, as well as on ex-situ phase-contrast microscopy of induced permanent material reactions. The experimental results are accompanied by numerical simulations of the pulse traces inside the dielectric material at different energetic conditions. The optical observations allow insights into the development and the dynamics of the laser-induced free carrier population, emphasizing the role of the bulk effects related to the nonlinear wave propagation into the transparent material during laser exposure. PACS 79.20.Ds; 52.50.Jm  相似文献   

4.
This article presents experimental results supported by advanced three-dimensional modeling for the dynamics emerging from the interaction of nanosecond laser pulses with thin metal films on dielectric substrates, especially at the melting and ablation regimes. Matter dynamics, such as the generation and propagation of surface acoustic waves and permanent deformations, are imaged with the use of a very high spatial and temporal resolution interferometric method accompanied by white-light interferometry. A three-dimensional finite element model is developed aiming to fully describe the spatiotemporal dynamics and predict with high accuracy the thermo-mechanical phenomena around melting and ablation regimes where phase changes take place. The ability of very high spatial and temporal resolution, the whole-field three-dimensional imaging as well as the simultaneous study of the laser pulse–thin film interaction regimes, makes this study valuable for applications where detailed knowledge of the thermo-mechanical behavior of matter under pulsed laser excitation is critical.  相似文献   

5.
A novel effect is studied of self-limitation of the diamond-like film thickness during laser irradiation of the interface of transparent substrates with liquid aromatic hydrocarbons. The interface is exposed through the transparent substrate to radiation of a copper vapor laser (wavelength of 510.6 nm, pulse duration of 20 ns). The thickness of diamond-like film increases linearly to 80-100 nm with the number of laser pulses and then saturates, while the substrate is ablated with nearly constant rate. This ablation rate depends on the thermal expansion coefficient of the substrate (glass, fused silica, sapphire, or CaF2). The absorption of extinction coefficient of deposited films measured by ellipsometry is of order of 104 cm-1 and is sufficient to cause the significant heating of the interface. The ablation of the transparent substrates is due to their unequal thermal expansion compared to the diamond-like film having different thermal expansion coefficient. The measured ablation rates scale from 0.2 Å/pulse for glass to 4.5 Å/pulse for CaF2. A 7m spatial resolution of the ablation process has been demonstrated for fused silica.  相似文献   

6.
黑体辐射法可用于测量电介质内部被超短脉冲激光加工后,电子和晶格的瞬时温度.当一个超短激光脉冲通过物镜聚焦到石英玻璃内部时,在焦点附近诱导出微结构.微结构中热影响区的最大宽度为16μm,热影响区发出的黑体辐射谱通过物镜、带耦合透镜的光纤、光谱仪以及ICCD组装成的系统记录.测试系统收集了电介质内部被单个激光脉冲辐照后,热影响区发射的黑体辐射谱,然后用Planck公式拟合黑体辐射谱,得到电介质温度.电介质被超短激光脉冲辐照后,首先电介质中的价带电子通过强场电离和雪崩电离跃迁到导带,高温高压的等离子体以冲击波的形式向外运动,通过对流方式传递能量,该过程发生在激光辐照石英后21 ns内.21 ns后冲击波转化为声波,中心的气态石英通过热扩散方式影响周围的固态区域,石英温度缓慢下降.在时刻t(单位ns),石英玻璃的温度为5333 exp(-t/1289)K.石英经过3.72μs将冷却到室温,因此重复频率在269 k Hz以上的激光,加工石英玻璃时具有热累积效应.  相似文献   

7.
When a femtosecond laser pulse is focused at the interface of two transparent substrates, localised melting and quenching of the two substrates occur around the focal volume, bridging them due to nonlinear absorption. The substrates can then be joined by resolidification of the materials. We investigate the optimum irradiation conditions needed to join borosilicate glass substrates and fused silica substrates using a 1 kHz 800 nm Ti:sapphire amplifier. We characterised the joint strength and the transmittance through joint volumes as a function of laser energy and translation velocity. We found that a joining strength as large as 14.9 MPa could be obtained in both fused silica and borosilicate glass. Annealing the joint samples led to an increase in the joint strength. PACS 42.65.Jx; 42.70.Ce; 81.20.Vj  相似文献   

8.
Laser-induced backside wet etching (LIBWE) is a promising process for microstructuring of rigid chemical resistant and inert transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated in a number of studies. LIBWE in a time scale of femtosecond and picosecond pulse durations has been investigated only in a few studies and just on fused silica. In the present study LIBWE of fluorides (CaF2, MgF2) and sapphire with a mode-locked picosecond (t p=10 ps) laser at a UV wavelength of λ=355 nm using toluene as absorbing liquid has been demonstrated. The influence of the laser fluence and the pulse number on the etching rate and the achieved surface morphology was investigated. The etching rate grows linearly with the laser fluence in the low and high-fluence ranges with different slopes. The achieved etching rates for CaF2 and for sapphire were in the same range. Contrary to CaF2 and sapphire the etching rates of MgF2 were one magnitude less. For backside etching on sapphire at high fluences smooth surfaces and at low fluences ripples pattern were found, whereas fluoride surfaces showed a trend towards crack formation.  相似文献   

9.
The laser etching using a surface adsorbed layer (LESAL) is a new method for precise etching of transparent materials with pulsed UV-laser beams. The influence of the processing parameters to the etch rate and the surface roughness for etching of fused silica, quartz, sapphire, and magnesium fluoride (MgF2) is investigated. Low etch rates of 1 nm/pulse and low roughness of about 1 nm rms were found for fused silica and quartz. This is an indication that different structural modifications of the material do not affect the etching significantly as long as the physical properties are not changed. MgF2 and sapphire feature a principal different etch behavior with a higher etch rate and a higher roughness. Both incubation effects as well as the temperature dependence of the etch rate can be interpreted by the formation of a modified near surface region due to the laser irradiation. At repetition rates up to 100 Hz, no changes of the etch rate have been observed at moderate laser fluences.  相似文献   

10.
Laser-induced backside etching of fused silica with gallium as highly absorbing liquid is demonstrated using pulsed infrared laser radiation. The influences of the laser fluence, the pulse number, and the pulse length on the etch rate and the etched surface topography were studied and the results are compared with these of excimer laser etching. The high reflectivity of the fused silica-gallium interface at IR wavelengths results in the measured high threshold fluences for etching of about 3 J/cm2 and 7 J/cm2 for 18 ns and 73 ns pulses, respectively. For both pulse lengths the etch rate rises almost linearly with laser fluence and reaches a value of 350 and 300 nm/pulse at a laser fluence of about 12 and 28 J/cm2, respectively. The etching process is almost free from incubation processes because etching with the first laser pulse and a constant etch rate were observed. The etched surfaces are well-defined with clear edges and a Gaussian-curved, smooth bottom. A roughness of about 1.5 nm rms was measured by AFM at an etch depth of 0.95 μm. The normalization of the etch rates with respect to the reflectivity and the pulse length results in similar etch rates and threshold fluence for the different pulse widths and wavelengths. It is concluded that etching is a thermal process including the laser heating, the materials melting, and the materials etching by mechanical forces. The backside etching of fused silica with IR-Nd:YAG laser can be a promising approach for the industrial usage of the backside etching of a wide range of materials. PACS 81.65.C; 81.05.J; 79.20.D; 61.80.B; 42.55.L  相似文献   

11.
This paper reports the micromachining results of different materials (Al, Si, InP and fused silica) using a Ti : sapphire laser at the wavelength of 800 and 267 nm with variable pulse lengths in the range from 100 fs to 10 ps. The hole arrays with a diameter up to a few μm through microdrilling are presented. We discussed how an effective suppression of the thermal diffusion inside the ablated materials and an effective microablation could be realized. If the laser fluence is taken only slightly above the threshold, a hole array can be drilled with diameters even smaller than the wavelength of the laser. Some examples are presented in the paper.  相似文献   

12.
Laser micromachining of transparent materials is an intensively studied research area from the point of view of microoptical element fabrication. One of the most promising indirect processing methods is the laser-induced back-side dry etching (LIBDE). During this method, transparent targets are contacted with solid thin layers, which absorb and transform the pulse energy resulting in etching. The applicability of LIBDE technology for processing of fused silica using a visible nanosecond dye laser (λ=500 nm, FWHM=11 ns) and a 100-nm-thick aluminium absorbing layer was investigated. The applied fluence was varied in the range of 0–3050 mJ/cm2; the illuminated area was 0.1 mm2. The threshold fluence of the LIBDE etching of fused silica was found to be approximately 540 mJ/cm2. The chemical composition of the surface layers on and around the etched holes was investigated by field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. It was found that on average 0.4±0.3 at. % aluminium is built into the upper ∼1-μm-thick volume of the illuminated fused silica, while the aluminium content fell below the detection limit in the case of the original surface. Our experiments proved that the LIBDE procedure is suitable for microprocessing of transparent materials using visible nanosecond laser light. PACS 42.62.-b; 61.80.Ba; 81.16.Rf; 81.65.Cf  相似文献   

13.
《Physics letters. A》2006,355(6):419-426
Following the recognition that parametric instabilities can significantly compromise the performance of advanced laser interferometer gravitational wave detectors, we compare the performance of three different test mass configurations: all fused silica test masses, all sapphire test masses and fused silica inboard test masses with sapphire end test masses. We show that the configuration with sapphire end test masses offers the opportunity for thermal tuning on a time scale comparable to the ring up time of oscillatory instabilities. This approach may enable significant reduction of parametric gain.  相似文献   

14.
This paper presents the design and performance analysis of an indigenously developed 110 W average output power copper HyBrID laser operating at 16 kHz pulse repetition rate. The laser active medium was confined within a fused silica tube of ∼6 cm diameter and ∼200 cm active length. An in-house developed high-power (∼10 kW) solidstate pulser was used as the electrical excitation source. A simple estimation of deposited electrical power, at the laser head, was carried out and based on it, the laser tube efficiency was found to be 2.9% at 70 W and 2.2% at 110 W laser power levels.  相似文献   

15.
We describe a high-energy, frequency chirped laser system designed for optical Stark deceleration of cold molecules. This system produces two, pulse amplified beams of up to 700 mJ with flat-top temporal profiles, whose frequency and intensity can be well controlled for durations from 20 ns–10 μs. The two beams are created by amplifying a single, rapidly tunable Nd:YVO4 microchip type laser at 1064 nm, which can be frequency chirped by up to 1 GHz over the duration of the pulse. Intensity modulation induced by relaxation oscillations in the microchip laser during the frequency chirp are virtually eliminated by injection locking a free running semiconductor diode laser before pulsed amplification.  相似文献   

16.
Using a broad band dual-angle pump-probe reflectometry technique, we obtained the ultrafast dielectric function dynamics of bulk ZnO under femtosecond laser excitation. We determined that multiphoton absorption of the 800-nm femtosecond laser excitation creates a large population of excited carriers with excess energy. Screening of the Coulomb interaction by the excited free carriers causes damping of the exciton resonance and renormalization of the band gap causing broadband (2.3–3.5 eV) changes in the dielectric function of ZnO. From the dielectric function, many transient material properties, such as the index of refraction of ZnO under excitation, can be determined to optimize ZnO-based devices.  相似文献   

17.
The presence of strong nonlinear absorption has been observed in laser modified fused silica. Intensity-dependent transmission measurements using 355, 532 and 1064 nm laser pulses were performed in pristine polished regions in fused silica substrates and in locations that were exposed to dielectric breakdown. The experimental results suggest that multiphoton absorption is considerably stronger in the modified regions compared to pristine sites and is strongly dependent on the excitation wavelength.  相似文献   

18.
19.
The contribution deals with ZnO thin layers doped by nitrogen which were prepared by pulsed laser deposition in N2O ambient atmosphere. Our approach is based on ablation of undoped ZnO target in active atmosphere containing N2O gas without any supporting excitation equipment in parallel. Ablation of ZnO target was performed at different pressures (1–32 Pa) of N2O ambient atmosphere by pulsed Nd:YAG laser (at 355 nm). Layers of ZnO were grown on different substrates (Si, sapphire, fused silica) and their properties were investigated by various analytical methods: scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), and optical transmission spectroscopy. The results confirmed incorporation of nitrogen into ZnO layers and its concentration was pressure dependent. According to SIMS analysis, there is a certain pressure level (above 10 Pa) when the presence of N becomes negligible. Transmittance spectra showed increasing of the optical band gap (E g) according to the pressure of N2O.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号