首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
显微成像光谱仪技术的研究及应用   总被引:3,自引:1,他引:2  
苏星  田维坚  张淳民 《光学技术》2006,32(6):820-823
显微成像光谱仪技术是一种生物组织检测方法,目前广泛应用于生物医学检测和疑难病症分析,已成为组织检测领域的研究热点。论述了显微成像光谱仪各结构功能模块的工作原理及特点,并对其各主要技术指标进行了分析。介绍了目前的发展现状,并对所出现的多种显微成像光谱仪的技术方案及特点做了详细的总结。研究结果表明,显微成像光谱技术作为一种新的技术手段,必将在临床医学、生物学、材料学以及分析化学等领域得到广泛的应用。  相似文献   

2.
Nondestructive techniques have seen successful growth in the last few years, and, among them, optical ones are widespread and extremely well received in the field of painting diagnostics because of their effectiveness and safety. At present, many techniques for nondestructive investigations of paintings are available; nevertheless, none of them is suitable for a quantitative characterization of varnish. However, varnish removal, either partial or complete, is a fundamental part of the cleaning process, which is an essential step in painting conservation. This critical process has been carried out, up to now, without the possibility of any non-destructive measurement for assessing the actual varnish thickness, but with microscopic observation of a detached microfragment. Optical coherence tomography (OCT) is a noninvasive technique that is well established for biomedical applications. In this work, we present a novel application of OCT to measure the varnish film thickness for painting diagnostics. The text was submitted by the authors in English.  相似文献   

3.
Optical coherence tomography (OCT) sensors traditionally use scanning optical delay lines with moving parts and a single detector. OCT systems with a linear detector array (linear OCT or L-OCT) are simple and robust, but a detector with approximately 10,000 pixels is needed for an imaging depth of 2mm, which is necessary for most biomedical applications. We present a new optical setup for L-OCT with an increased measurement range. An additional grating performs a reduction of the spatial frequencies of the fringe pattern on the detector without loss in the signal-to-noise ratio, so the signal can be sampled with a minimal number of pixels. The theory for this approach is addressed and the first measurements are presented.  相似文献   

4.
Monitoring blood flow velocity could have great value for biomedical research and clinical diagnostics. One of current restrictions to determine flow velocity by the use of Doppler optical coherence tomography (Doppler OCT) is that the Doppler angle should be predefined. However, from a practical point of view, it is not easy to predetermine Doppler angle for a flow beneath the tissue surface. In this work, a novel method for measuring both flow velocity and Doppler angle simultaneously by the use of Doppler OCT is proposed and demonstrated. Based on Doppler spectrum analysis, this technique measures both longitudinal and transverse components of flow velocity by detecting its Doppler shift and Doppler bandwidth to determine velocity and Doppler angle simultaneously. Such a technique extends flow velocity measurement into a broadening practical use of Doppler OCT where Doppler angle would not need to be predefined, for example, blood flow beneath the tissue surface. Therefore, with this technique, Doppler OCT could be applied to more practical diagnoses of microcirculation.  相似文献   

5.
Differential spectral interferometry (DSI), a novel method of biomedical imaging that combines the high dynamic range of optical coherence tomography (OCT) with inherently parallel low-bandwidth image acquisition of spectral interferometry (SI), is described. DSI efficiently removes the deleterious dc background inherent in SI measurements while maintaining the parallel nature of SI. We demonstrate DSI on both synthetic and biological samples. Because DSI preserves the low-bandwidth, parallel nature of SI, it is competitive with OCT for biomedical applications in terms of image quality and acquisition rate.  相似文献   

6.
Zhao SY  Yu X  Qiu HX  Huang NY  Wang TS  Xue P  Gu Y 《光谱学与光谱分析》2010,30(12):3347-3350
光学相干层析术(optical coherence tomography,简称OCT)具有非侵入性,高分辨及高速成像的优点,特别适合于生物医学领域。但由于大部分生物组织具高散射系数,通常仅能对表层组织下数毫米深度内进行成像。穿透深度不足限制了OCT在皮肤科等领域应用。作为常见多发病的鲜红斑痣具有病变组织浅,血管增生明显等特点,所以OCT非常适于鲜红斑痣的检测。通过选择皮肤穿透性好的中心波长为1310nm超辐射二极管,合理优化样品臂和参考臂光强比例及偏振控制,实现了对鲜红斑痣在体成像研究,采集了清晰的OCT图像,得到其关键特征参数,如表皮层厚度,血管直径等,对鲜红斑痣的诊断及制定合理治疗方案具有重要意义。  相似文献   

7.
Optical Coherence Tomography (OCT) is considered as fundamentally new image modality having advantages such as high-speed, real-time cross sectional imaging with non-invasive in vivo investigation of biological tissue and its potential for clinical application is highly evaluated. In spite of these merits, the research activity in OCT has not taken much attention until recently. However the situation in Korea is gradually changing due to understanding of its versatile applications. Active research and commercialization are underway. Bulk optics-based OCT system is changed into alignfree fiber-optics system. With our expertise in the fabrication of fiber grating devices and strong background in control of fiber based system, we hope to contribute in developing simplified all-fiber OCT system with better performance. As a leading research group, working on OCT, we have firstly implemented fiber-based OCT system in Korea and demonstrated the imaging performance with glass plate and onion.  相似文献   

8.
Optical coherence tomography (OCT) is a relatively new imaging technique capable of recording cross-sectional images of transparent and turbid structures with micrometer-scale resolution. Originally developed for biomedical imaging applications, this technique also has a great potential for non-destructive material characterisation and testing. Polarisation-sensitive (PS) OCT is a recent extension of classical OCT that measures and images birefringence properties of a sample, which, however, has not yet been applied to materials science. We present imaging of glass-fibre-enforced epoxy resin compounds and the detection of dry spots, where the epoxy did not properly penetrate the glass-fibre structure. Furthermore, we demonstrate PS-OCT imaging of the birefringence properties of different materials. The mapping of strain fields of samples under uniaxial and non-uniform external stress and the detection of flow patterns in injection-moulded plastic parts could be demonstrated with this technique for the first time. Received: 21 October 2002 / Accepted: 22 November 2002 / Published online: 29 January 2003 RID="*" ID="*"Corresponding author. Fax: +43-732/9015-5618, E-mail: david.stifter@uar.at  相似文献   

9.
植物油和动物脂肪在THz波段的吸收和色散   总被引:10,自引:0,他引:10       下载免费PDF全文
由超短激光脉冲产生的THz脉冲是具有较宽频带的电磁辐射,属于远红外波段,该波段电磁波与物质的相互作用是个崭新的研究领域.文章应用THz光谱技术研究了5种植物油和两种动物脂肪的THz光谱,得到了这些材料在0.2—1.6THz频率范围的折射率和吸收系数.结果表 明,不同种类的油脂具有不同的折射率,其中植物油的折射率随频率的增加而略有降低,其 值在1.46—1.66之间.吸收系数在0.2—1.2THz随频率的增加而增大.动物脂肪的折射率 随频率变化基本不变,并且随温度升高而增大,其值在1.4—1.52之间.吸收系数在0.2— 1.2THz随频率的增加而增大.该研究结果对于THz时域光谱技术应用于生物成像及生物医学 有重要的意义. 关键词: THz光谱技术 折射率 吸收系数 植物油 动物脂肪  相似文献   

10.
Optical Coherence Tomography (OCT) is a new technology for performing high-resolution cross sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross sectional images of tissue structure on the micron scale in situ and in real time. OCT functions as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures.  相似文献   

11.
光声成像技术是生物医学领域中新兴的无损检测技术,具有对比度高、分辨率好、穿透能力强等优点.本文介绍了光声成像技术近年来的进展状况,主要涉及成像探测方式的改进、成像速度的加快、成像分辨率的提高以及图像重构算法的发展等.以该项技术在现代临床诊断中的应用为例,描述了其在生物医学领域中应用范围的拓宽.最后,总结了该项技术现存的...  相似文献   

12.
Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.  相似文献   

13.
Diversity of biomedical applications of acoustic radiation force   总被引:1,自引:0,他引:1  
  相似文献   

14.
In U-shaped, hand-size magnetic resonance surface scanners, imaging is performed along only one spatial direction, with the application of just one gradient (one-dimensional imaging). Lateral spatial resolution can be obtained by magnet displacement, but, in this case, resolution is very poor (on the order of some millimeters) and cannot be useful for high-resolution imaging applications. In this article, an innovative technique for acquisition and reconstruction of images produced by U-shaped, hand-size MRI surface scanners is presented. The proposed method is based on the acquisition of overlapping strips and an analytical reconstruction technique; it is capable of arbitrarily improving spatial lateral resolution without either using a second magnetic field gradient or making any assumptions about the imaged sample extension. Numerical simulations on synthetic images are reported demonstrating the method functionalities. The presented method also makes it possible to use U-shaped, hand-size MRI surface scanners for high-resolution biomedical applications, such as the imaging of skin lesions.  相似文献   

15.
Grating-based x-ray phase contrast imaging has attracted increasing interest in recent decades as multimodal and laboratory source usable method. Specific efforts have been focused on establishing a new extraction method to perform practical applications. In this work, noise properties of multi-combination information of newly established information extraction method, so-called angular signal radiography method, are investigated to provide guidelines for targeted and specific applications. The results show that how multi-combination of images can be used in targeted practical applications to obtain a high-quality image in terms of signal-to-noise ratio. Our conclusions can also hold true for upcoming targeted practical applications such as biomedical imaging, non-destructive imaging, and materials science.  相似文献   

16.
光纤型光学相干层析成像系统的研制   总被引:22,自引:7,他引:15  
光学相干层析(OCT)成像技术是一新近发展的高分辨力生物医学成像手段,能非侵入性地对活体内部的结构与生理功能进行可视化观察。采用宽带近红外光源,基于迈克耳孙干涉原理和外差探测方法,建立了单模光纤型光学相干层析成像系统,相干地提取从生物体内部返回的深度分辨的弹性散射光信息,并依此构筑了自然状态下活体组织的二维光学相干层析成像图像和三维光学相干层析成像图像。光纤化设计的光学相干层析成像系统紧凑、灵活,便于与光纤导管、内窥镜和其它成像装置的有机结合,以拓展其观察范围和应用领域。  相似文献   

17.
张崇磊  辛自强  闵长俊  袁小聪 《物理学报》2017,66(14):148701-148701
结构光照明显微成像技术(SIM)因其高分辨、宽场、快速成像的优势,在生物医学成像领域发挥了不可估量的作用.结构光照明显微成像技术与动态可控的亚波长表面等离激元条纹相结合,可以在不借助非线性效应的情况下,将传统SIM的分辨率从2倍于衍射极限频率提升到3 4倍,此外还有抑制背景噪声、提升信噪比的能力,在近表面的生物医学成像应用中有重要价值.本文介绍了表面等离激元结构光照明显微成像技术的原理,并总结了近几年国内外的相关研究进展.  相似文献   

18.
磁共振成像(MRI)是一个能够探测样品内部特性的有效检测手段,已被广泛应用于化学、生物研究,以及医疗诊断领域. 自约40年前发展以来, 成像方法的不断发展使得MRI的成像分辨率、实验效率和成像杂核能力得到了很大的改进. 边缘磁场成像(STRAFI)是一种很具潜力的成像方法之一,它利用了超导磁体本身具有的边缘场的强梯度场. 该综述介绍了STRAFI基础,并概括了成像的基本原理、STRAFI的实验理论和方法及其在实际研究中的应用. 由此将比较STRAFI实验相对于传统MRI方法的所具有的优势和多面可行性.  相似文献   

19.
Electrospun composite nanofibers for functional applications   总被引:1,自引:0,他引:1  
In this article an outline of studies conducted to date utilizing the process of electrospinning is presented. This overview for the first time focuses on research of composite nanofiber synthesis and their applications. The phenomenon of bringing materials to the nanometer scale not only improves their properties, but also creates entirely new ones. The electrospinning technique is a simple and versatile method that offers a time and cost effective production of strategic combinations of polymer and composites nanofibers useful for numerous applications highlighted in this review. The future prospects of the field are also examined.  相似文献   

20.
A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for heterogeneous multilayered tissue. Excellent agreement between the extracted values of the optical scattering properties of the different layers and the corresponding input reference values of the MC simulation was obtained, which demonstrates the feasibility of the method for in vivo applications. This is to our knowledge the first time such verification has been obtained, and the results hold promise for expanding the functional imaging capabilities of OCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号