首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quenching of excited triplet states of sufficient energy by O2 leads to O2(1sigma(g)+) and O2(1delta(g)) singlet oxygen and O2(3sigma(g)-) ground-state oxygen as well. The present work investigates the question whether in the absence of charge transfer (CT) interactions between triplet sensitizer and O2 the rate constants of formation of the three different O2 product states follow a generally valid energy gap law. For that purpose, lifetimes of the upper excited O2(1sigma(g)+) have been determined in a mixture of 7 vol % benzene in carbon tetrachloride, in chloroform, and in perdeuterated acetonitrile. They amount to 1.86, 1.40, and 0.58 ns, respectively. Furthermore, rate constants of O2(1sigma(g)+), O2(1delta(g)), and O2(3sigma(g)-) formation have been measured in these three solvents for five pi pi* triplet sensitizers with negligible CT interactions. The rate constants are independent of solvent polarity. After normalization for the multiplicity of the respective O2 product state, the rate constants follow a common dependence on the excess energies of the respective product channels. This empirical energy gap relation describes also quantitatively the rate constants of quenching of O2(1delta(g)) by 28 carotenoids. Therefore, it represents in the absence of CT interactions a generally valid energy gap law for the rate constants of electronic energy transfer to and from O2.  相似文献   

2.
Four dinuclear rhenium complexes, [Re2Cl8](2-) (1), [Re2(mu-Cl)3Cl6](2-) (2a), [Re2(mu-Cl)3Cl6](-) (2b), and [Re2(mu-Cl)2Cl8](2-) (3), were theoretically investigated by the CASSCF, MRMP2, SA-CASSCF, and MCQDPT methods. Interesting differences in electronic structure and Re-Re bonding nature among these complexes are clearly reported here, as follows: In 1, the ground state is the 1A1g state. The approximate stabilization energies by the sigma, pi, and delta bonding interactions are evaluated to be 4.36, 2.89, and 0.52 eV, respectively, by the MRMP2 method. In 2a, the ground state is the 2E" state. The approximate stabilization energy by two degenerate delta bonding interactions is estimated to be 0.36 eV by the MCQDPT method. One delta bonding interaction of 2a is much weaker than that of 1, which is discussed in terms of the Re-Re distance and the Re oxidation state. In 2b, the ground state is the 1A1' state, of which multiconfigurational nature is extremely large unlike that of the 2E" ground state of 2a despite similarities between 2a and 2b. In 3, the sigma, pi, and delta bonding interactions are not effectively formed between two Re centers. As a result, the 1Ag, 3B1u, 5Ag, and 7B1u states are in almost the same energy within 0.03 eV. This result is consistent with the paramagnetism of 3 experimentally reported.  相似文献   

3.
We present the synthesis, as well as the structural and magnetic characterization, of [Ru2(D(3,5-Cl2Ph)F)4Cl(0.5H2O)].C6H14 (D(3,5-Cl2Ph)F = N,N'-di(3,5-dichlorophenyl)formamidinate), a Ru2(5+) compound having a 4B(2u) ground state derived from a sigma2pi4delta2pi2delta electron configuration. The persistence of this configuration from 27 to 300 K is shown by the invariance of the Ru-Ru distance. Orientation-dependent magnetic susceptibility (chiT) and magnetization (M(H)) data are in accord with a spin quartet ground state with large magnetocrystalline anisotropy associated with a large axial zero-field splitting (D) parameter. Theoretical fits to chiT and M(H) plots yielded D/kB = +114 K, implying an S = +/-1/2 Kramers doublet ground state at low temperature. Single-crystal and powder EPR data are consistent with this result, as the only observed transition is between the M(s) = +/1/2 Zeeman levels. The g values are g(perpendicular) = 2.182, g(parallel) = 1.970, and D = 79.8 cm(-1). The totality of the results demands D > 0.  相似文献   

4.
用B3LYP/6-311+G(d)方法对化合物NFeN弯曲型和直线型的不同自旋多重度多个电子态的几何结构、电子结构、能量和振动光谱进行了计算研究. 结果表明, 单重态中Fe―N键长普遍比三重态和五重态中的短, 在155 pm左右; NFeN三重态电子结构最丰富, 自然键轨道和Mulliken布居显示Fe―N键具有部分离子键特征; 两种结构的所有稳定态中能量最低的是15A2态, 能量相近的有13B1、13A2、13B2和11A1态, 直线型中能量最低是3Δg态; 相对于分子基态反应物Fe(a5D)+N2(X1Σg+)所有电子态的能量都偏高, 该反应在热力学上是不利的, 但是对于原子态反应物Fe(a5D)+2N(4S)则是放热反应; 计算振动频率和强度与实验较吻合的是13B1态; 复合物FeN2与化合物NFeN结构差异明显; Fe原子直接插入N2分子的势能曲线表明该反应能垒很高, 在动力学上也是不利的.  相似文献   

5.
6.
High-level ab initio calculations employing the multireference configuration interaction and coupled clusters methods with a correlation-consistent sequence of basis sets have been used to obtain accurate potential energy curves for the complex of the sodium cation with the iodine atom. Potential curves for the first two electronic Lambda-S states have very different characters: the potential for the 2pi state has a well depth of approximately 10 kcal/mol, while the 2sigma state is essentially unbound. This difference is rationalized in terms of the anisotropic interaction of the quadrupole moment of the iodine atom with the sodium cation, which is stabilizing in the case of the 2pi state and destabilizing in the case of the 2sigma state. The effects of spin-orbit coupling have been accounted for with both ab initio and semiempirical approaches, which have been found to give practically the same results. Inclusion of spin-orbit interactions does not affect the X(omega = 32) ground state, which retains its 2pi character, but it results in two omega = 12 spin-orbit states, with mixed 2sigma and 2pi characters and binding energies roughly half of that of the ground spin-orbit state. Complete basis set (CBS) extrapolations of potential curves, binding energies, and equilibrium geometries were also performed, and used to calculate a number of rovibronic parameters for the Na+...I* complex and to parameterize model potentials. The final CBS-extrapolated and zero-point vibrational energy-corrected binding energy is 10.2 kcal/mol. Applications of the present results for simulations of NaI photodissociation femtosecond spectroscopy are discussed.  相似文献   

7.
The optical spectrum of diatomic RuC has been recorded from 17 800 to 24 200 cm(-1). Three previously unidentified excited electronic states were analyzed and identified as having Omega' = 0, Omega' = 2, and Omega' = 3. The Omega' = 3 state was determined to be a 3Delta3 state that is suggested to arise from a mixture of the 10sigma(2)11sigma(2)5pi(3)2delta(3)12sigma(1)6pi(1) and 10sigma(2)11sigma(1)5pi(3)2delta(3)12sigma(2)6pi(1) electronic configurations. Three additional bands belonging to the previously observed [18.1] (1)Pi<--X (1)Sigma(+) system were analyzed to obtain B(e) (')=0.558 244(48) cm(-1), alpha(e) (')=0.004 655(27) cm(-1), omegae' = 887.201(37) cm(-1), and omega(e) 'xe' = 5.589(7) cm(-1) for the 102Ru 12C isotopomer (1sigma error limits). A Rydberg-Klein-Rees analysis was then performed using the determined spectroscopic constants of the [18.1] 1Pi state, and similar analyses were performed for the previously observed states. The resulting potential energy curves are provided for the 100Ru 12C, 101Ru 12C, 102Ru 12C, and 104Ru 12C isotopic species.  相似文献   

8.
9.
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.  相似文献   

10.
Electronic structures and spectroscopic properties of a series of nitrido-osmium (VI) complex ions with acetylide ligands, [OsN(C[Triple Bond]CR)(4)](-) (R[Double Bond]H, (1), CH(3) (2), and Ph (3)) were investigated theoretically. The structures of the complexes were fully optimized at the B3LYP and CIS level for the ground states and excited states, respectively. The calculated bond lengths of Os[Triple Bond]N (1.639 A in 1, 1.642 A in 2, and 1.643 A in 3) and Os-C (2.040 A in 1, 2.043 A in 2, and 2.042 A in 3) in ground state agree well with the experimental results. The bond length of Os[Triple Bond]N bond is lengthened by ca. 0.13 A in the A (3)B(2) excited state compared to the (1)A(1) ground state, which is consistent with the lower vibration frequency of nu(Os-N) ( approximately 780 cm(-1)) in the excited state than that ( approximately 1175 cm(-1)) in the ground state. Among the calculated dipole-allowed absorptions at lambda>250 nm, the intense absorption at 261 nm for 1, 266 nm for 2, and 300 nm for 3 were attributed to the (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The lowest energy absorption at lambda(max)=393 nm for 1, 400 nm for 2, and 400 nm for 3 were assigned as (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[d(xy)(Os)+pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The calculated phosphorescence emission at lambda(max)=581 nm for 1, 588 nm for 2, and 609 nm for 3 were originated from (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], and (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh))(1)(d(xy)(Os)+pi(C[Triple Bond]CPh))(1)] excited state, respectively.  相似文献   

11.
H(D) Rydberg atom photofragment translational spectroscopy has been used to investigate the dynamics of H(D) atom loss C6H5SH(C6H5SD) following excitation at many wavelengths lambda phot in the range of 225-290 nm. The C6H5S cofragments are formed in both their ground (X(2)B1) and first excited ((2)B2) electronic states, in a distribution of vibrational levels that spreads and shifts to higher internal energies as lambda(phot) is reduced. Excitation at lambda(phot) > 275 nm populates levels of the first (1)pi pi* state, which decay by tunnelling to the dissociative (1)pi sigma* state potential energy surface (PES). S-H torsional motion is identified as a coupling mode facilitating population transfer at the conical intersection (CI) between the diabatic (1)pi pi* and (1)pi sigma* PESs. At shorter lambda(phot), the (1)pi sigma* state is deduced to be populated either directly or by efficient vibronic coupling from higher (1)pipi* states. Flux evolving on the (1)pi sigma* PES samples a second CI, at longer R(S-H), between the diabatic (1)pi sigma* and ground ((1)pi pi) PESs, where the electronic branching between ground and excited state C6H5S fragments is determined. The C6H5S(X(2)B1) and C6H5S((2)B2) products are deduced to be formed in levels with, respectively, a' and a' vibrational symmetry-behavior that reflects both Franck-Condon effects (both in the initial photoexcitation step and in the subsequent in-plane forces acting during dissociation) and the effects of the out-of-plane coupling mode(s), nu11 and nu16a, at the (1)pi sigma*/(1)pi pi CI. The vibrational state assignments enabled by the high-energy resolution of the present data allow new and improved estimations of the bond dissociation energies, D0(C6H5S-H) < or = 28,030 +/- 100 cm(-1) and D0(C6H5S-D) < or = 28,610 +/- 100 cm(-1), and of the energy separation between the X(2)B1 and (2)B2 states of the C6H5S radical, T(00) = 2800 +/- 40 cm(-1). Similarities, and differences, between the measured energy disposals accompanying UV photoinduced X-H (X = S, O) bond fission in thiophenol and phenol are discussed.  相似文献   

12.
In the present work we investigate the adequacy of broken-symmetry unrestricted density functional theory for constructing the potential energy curve of nickel dimer and nickel hydride, as a model for larger bare and hydrogenated nickel cluster calculations. We use three hybrid functionals: the popular B3LYP, Becke's newest optimized functional Becke98, and the simple FSLYP functional (50% Hartree-Fock and 50% Slater exchange and LYP gradient-corrected correlation functional) with two basis sets: all-electron (AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and basis set. We find that, overall, the best agreement with experiment, comparable to that of the high-level CASPT2, is obtained with B3LYP/AE, closely followed by Becke98/AE and Becke98/ECP. FSLYP/AE and B3LYP/ECP give slightly worse agreement with experiment, and FSLYP/ECP is the only method among the ones we studied that gives an unacceptably large error, underestimating the dissociation energy of Ni(2) by 28%, and being in the largest disagreement with the experiment and the other theoretical predictions. We also find that for Ni(2), the spin projection for the broken-symmetry unrestricted singlet states changes the ordering of the states, but the splittings are less than 10 meV. All our calculations predict a deltadelta-hole ground state for Ni(2) and delta-hole ground state for NiH. Upon spin projection of the singlet state of Ni(2), almost all of our calculations: Becke98 and FSLYP both AE and ECP and B3LYP/AE predict (1)(d(A)(x(2)-y(2)d(B)(x(2)-y(2)) or (1)(d(A)(xy) (d)(B)(xy)) ground state, which is a mixture of (1)Sigma(g) (+) and (1)Gamma(g). B3LYP/ECP predicts a (3)(d(A)(x(2)-y(2))d(B)(xy) (mixture of (3)Sigma(g) (-) and (3)Gamma(u)) ground state virtually degenerate with the (1)(d(A)(x(2)-y(2)d(B)(x)(2)-y(2)/(1)(d(A)(xy)D(B)(xy) state. The doublet delta-hole ground state of NiH predicted by all our calculations is in agreement with the experimentally predicted (2)Delta ground state. For Ni(2), all our results are consistent with the experimentally predicted ground state of 0(g) (+) (a mixture of (1)Sigma(g) (+) and (3)Sigma(g) (-)) or 0(u) (-) (a mixture of (1)Sigma(u) (-) and (3)Sigma(u) (+)).  相似文献   

13.
The absorption cross-sections at room temperature are reported for the first time, of Br2 vapor in overlapping bound-free and bound-bound transition of A(3)pi1u <-- Xsigma(g)+, X(1)pi1u <-- X(1)sigma(g)+ and B(3)pi0u <-- X(1)sigma(g)+, using cavity ring down spectroscopy (CRDS) technique. We reported here, the A(3)pi1u <-- X(1)sigma(g)+, transition is included along with the two stronger X(1)pi1u <-- X(1)sigma(g)+ and B(3)pi0u <-- X(1)sigma(g) transitions of Br2. We obtained discrete absorption cross-section in the rotational structure, the continuum absorption cross-sections, and were also able to measure the absorption cross-section in separate contribution of A(3)pi1u <-- X(1)sigma(g)+, (1)pi1u <-- X(1)sigma(g)+, and B(3)pi0u <-- X(1)sigma(g)+ transitions using CRDS method to use quantum yield of Br*((2)P(1/2)). We obtained absorption cross-section order 10(-19) cm2 and detection 10(13) molecule cm(-3) (1 mTorr) of Br2. The absorption cross-sections are increasing with increasing excitation energy in the wavelength region 510-535 nm.  相似文献   

14.
Density functional theory (DFT) calculations on trans-dioxo metal complexes containing saturated amine ligands, trans-[M(O)2(NH3)2(NMeH2)2]2+ (M=Fe, Ru, Os), were performed with different types of density functionals (DFs): 1) pure generalized gradient approximations (pure GGAs): PW91, BP86, and OLYP; 2) meta-GGAs: VSXC and HCTH407; and 3) hybrid DFs: B3LYP and PBE1PBE. With pure GGAs and meta-GGAs, a singlet d2 ground state for trans-[Fe(O)2(NH3)2(NMeH2)2]2+ was obtained, but a quintet ground state was predicted by the hybrid DFs B3LYP and PBE1PBE. The lowest transition energies in water were calculated to be at lambda approximately 509 and 515 nm in the respective ground-state geometries from PW91 and B3LYP calculations. The nature of this transition is dependent on the DFs used: a ligand-to-metal charge-transfer (LMCT) transition with PW91, but a pi(Fe-O)-->pi*(Fe-O) transition with B3LYP, in which pi and pi* are the bonding and antibonding combinations between the dpi(Fe) and ppi(O(2-)) orbitals. The FeVI/V reduction potential of trans-[Fe(O)2(NH3)2NMeH2)2]2+ was estimated to be +1.30 V versus NHE based on PW91 results. The [Fe(qpy)(O)2](n+) (qpy=2,2':6',2':6',2':6',2'-quinquepyridine; n=1 and 2) ions, tentatively assigned to dioxo iron(V) and dioxo iron(VI), respectively, were detected in the gas phase by high-resolution ESI-MS spectroscopy.  相似文献   

15.
The vibration-rotation emission spectra of CdH2 and CdD2 molecules have been recorded at high resolution using a Fourier-transform spectrometer. The molecules were generated in a furnace-discharge emission source by reaction of cadmium vapor with molecular hydrogen or deuterium. The fundamental bands for the antisymmetric stretching mode (upsilon3) of CdH2 and CdD2 were detected at about 1771.5 and 1278.3 cm(-1), respectively. In addition, the 002(sigma(g)+)-001(sigma(u)+) and 01 l(pi(g))-010(pi(u)) hot bands were observed for CdH2. Spectroscopic constants were determined for each of the 12 observed isotopologs: 110CdH2, 111CdH2, 112CdH2, 113CdH2, 114CdH2, 116CdH2, 1l0CdD2, 111CdD2, 112CdD2, 113CdD2, 114CdD2, and 116CdD2. The average Cd-H and Cd-D bond distances (r0) were determined to be 1.683028(10) and 1.679161(16) angstroms, respectively.  相似文献   

16.
In order to assess the accuracy of wave-function and density functional theory (DFT) based methods for excited states of the uranyl(VI) UO2(2+) molecule excitation energies and geometries of states originating from excitation from the sigma(u), sigma(g), pi(u), and pi(g) orbitals to the nonbonding 5f(delta) and 5f(phi) have been calculated with different methods. The investigation included linear-response CCSD (LR-CCSD), multiconfigurational perturbation theory (CASSCFCASPT2), size-extensivity corrected multireference configuration interaction (MRCI) and AQCC, and the DFT based methods time-dependent density functional theory (TD-DFT) with different functionals and the hybrid DFTMRCI method. Excellent agreement between all nonperturbative wave-function based methods was obtained. CASPT2 does not give energies in agreement with the nonperturbative wave-function based methods, and neither does TD-DFT, in particular, for the higher excitations. The CAM-B3LYP functional, which has a corrected asymptotic behavior, improves the accuracy especially in the higher region of the electronic spectrum. The hybrid DFTMRCI method performs better than TD-DFT, again compared to the nonperturbative wave-function based results. However, TD-DFT, with common functionals such as B3LYP, yields acceptable geometries and relaxation energies for all excited states compared to LR-CCSD. The structure of excited states corresponding to excitation out of the highest occupied sigma(u) orbital are symmetric while that arising from excitations out of the pi(u) orbitals have asymmetric structures. The distant oxygen atom acquires a radical character and likely becomes a strong proton acceptor. These electronic states may play an important role in photoinduced proton exchange with a water molecule of the aqueous environment.  相似文献   

17.
The C1pi(u) <-- X1sigma(g)+ system of Na2 is studied by the polarization labelling spectroscopy technique. Accurate molecular constants are derived for the observed levels nu = 0-12, J = 12-100 in the C1pi(u) state.  相似文献   

18.
A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.  相似文献   

19.
The mechanism for the photochemically induced isotope-exchange reaction U(17/18)O2(2+)(aq) + H2(16)O <==> U(16)O2(2+)(aq) + H2(17/18)O has been studied using quantum-chemical methods. There is a dense manifold of states between 22,000 and 54,000 cm(-1) that results from excitations from the sigma(u) and pi(u) bonding orbitals in the (1)Sigma(g)(+) ground state to the nonbonding f(delta) and f(phi) orbitals localized on uranium. On the basis of investigations of the reaction profile in the (1)Sigma(g)(+) ground state and the excited states (3)Delta(g) (the lowest triplet state) and (3)Gamma(g) (one of the several higher triplet states), the latter two of which have the electron configurations sigma(u)f(delta) and pi(u)f(phi), respectively, we suggest that the isotope exchange takes place in one of the higher triplet states, of which the (3)Gamma(g) state was used as a representative. The geometries of the luminescent (3)Delta(g) state, the lowest in the sigma(u)f(delta,phi) manifold (the "sigma" states), and the (1)Sigma(g)(+) ground state are very similar, except that the bond distances are slightly longer in the former. This is presumably a result of transfer of a bonding electron to a nonbonding f orbital, which makes the excited state in some respects similar to uranyl(V). As is the case for all of the states of the pi(u)f(delta,phi) manifold (the "pi" states), the geometry of the (3)Gamma(g) state is very different from that of the (3)Delta(g) "sigma" state and has nonequivalent U-O(yl) distances of 1.982 and 1.763 A; in the (3)Gamma(g) state, the yl-exchange takes place by transfer of a proton or hydrogen from water to the more distant yl-oxygen. The activation barriers for proton/hydrogen transfer in the ground state and the (3)Delta(g) and (3)Gamma(g) states are 186, 219, and 84 kJ/mol, respectively. The relaxation energy for the (3)Gamma(g) state in the solvent after photoexcitation is -86 kJ/mol, indicating that the energy barrier can be overcome; the "pi" states are therefore the most probable route for proton/hydrogen transfer. They can be populated after UV irradiation but are too high in energy (approximately 36,000-40,000 cm(-1)) to be reached by a single-photon absorption at 436 nm (22,900 cm(-1)), where experimental data have demonstrated that exchange can take place. Okuyama et al. [Bull. Res. Lab. Nucl. React. (Tokyo Inst. Technol.) 1978, 3, 39-50] have demonstrated that an intermediate is formed when an acidic solution of UO2(2+)(aq) is flash-photolyzed in the UV range. The absorption spectrum of this short-lived intermediate (which has a maximum at 560 nm) indicates that this species arises from 436 nm excitation of the luminescent (3)Delta(g) state (which has a lifetime of approximately 2 x 10(-6) s); this is sufficient to reach the reactive "pi" states. It has been speculated that the primary reaction in acidic solutions of UO2(2+)(aq) is the formation of a uranyl(V) species; our results indicate that the structure in the luminescent state has some similarity to that of UO2(+) but that the reactive species in the "pi" states is a cation radical with a distinctly different structure.  相似文献   

20.
Employing the coupled-cluster approach and correlation consistent basis sets of triple and quadruple cardinality, we have investigated the electronic structure and bonding of the HC(N2)x(+) and HC(CO)x(+), x = 1, 2, molecular cations. We report geometries, binding energies and potential energy profiles. The ground states of HC(N2)+, HC(CO)+ and HC(N2)2(+), HC(CO)2(+) are of 3sigma- and 1A1 symmetries, respectively. All four charged species are well bound with binding energies ranging from 81 [HC(N2)+ (X3sigma-) --> CH+(a3pi) + N2(X1sigma(g)+)] to 178 [HC(CO)2(+)(X1A1) --> CH+(X1sigma+) + 2CO(X1sigma+)] kcal/mol. It is our belief that the X1A1 states of HC(N2)2(+) and HC(CO)2(+) are isolable in the solid state if combined with appropriate counteranions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号