首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The time-resolved diffraction signal from a laser-excited solution has three principal components: the solute-only term, the solute-solvent cross term, and the solvent-only term. The last term is very sensitive to the thermodynamic state of the bulk solvent, which may change during a chemical reaction due to energy transfer from light-absorbing solute molecules to the surrounding solvent molecules and the following relaxation to equilibrium with the environment around the scattering volume. The volume expansion coefficient alpha for a liquid is typically approximately 1 x 10(-3) K(-1), which is about 1000 times greater than for a solid. Hence solvent scattering is a very sensitive on-line thermometer. The decomposition of the scattered x-ray signal has so far been aided by molecular dynamics (MD) simulations, a method capable of simulating the solvent response as well as the solute term and solute/solvent cross terms for the data analysis. Here we present an experimental procedure, applicable to most hydrogen containing solvents, that directly measures the solvent response to a transient temperature rise. The overtone modes of OH stretching and CH3 asymmetric stretching in liquid methanol were excited by near-infrared femtosecond laser pulses at 1.5 and 1.7 microm and the ensuing hydrodynamics, induced by the transfer of heat from a subset of excited CH3OH* to the bulk and the subsequent thermal expansion, were probed by 100 ps x-ray pulses from a synchrotron. The time-resolved data allowed us to extract two key differentials: the change in the solvent diffraction from a temperature change at constant density, seen at a very short time delay approximately 100 ps, and a term from a change in density at constant temperature. The latter term becomes relevant at later times approximately 1 mus when the bulk of liquid expands to accommodate its new temperature at ambient pressure. These two terms are the principal building blocks in the hydrodynamic equation of state, and they are needed in a self-consistent reconstruction of the solvent response during a chemical reaction. We compare the experimental solvent terms with those from MD simulations. The use of experimentally determined solvent differentials greatly improved the quality of global fits when applied to the time-resolved data for C2H4I2 dissolved in methanol.  相似文献   

2.
Liquid phase time-resolved x-ray diffraction with 100 ps resolution has recently emerged as a powerful technique for probing the structural dynamics of transient photochemical species in solution. It is intrinsic to the method, however, that a structural signal is observed not only from the photochemical of interest but also from the embedding solvent matrix. To experimentally characterize the x-ray diffraction signal deriving from the solvent alone we performed time-resolved diffraction studies of a pure liquid sample over a time domain from -250 ps to 2.5 micros. Multiphoton excitation was used to rapidly heat liquid CH(2)Cl(2) using UV pulses of 100 fs duration. A significant x-ray diffraction signal is visible prior to the onset of thermal expansion, which characterizes a highly compressed superheated liquid. Liquid CH(2)Cl(2) then expands as a shock wave propagates through the sample and the temporal dependence of this phenomenon is in good agreement with theory. An unexpectedly slow initial release of energy into the liquid as heat is observed from multiphoton excited CH(2)Cl(2), revealing the presence of a metastable state of multiphoton excited CH(2)Cl(2).  相似文献   

3.
A dilute solution of water in a hydrophobic solvent, such as carbon tetrachloride (CCl4), presents an opportunity to study the rotational properties of water without the complicating effects of hydrogen bonds. We report here the results of theoretical, experimental, and semiempirical studies of a 0.03 mole percent solution of water in CCl4. It is shown that for this solution there are negligible water-water interactions or water-CCl4 interactions; theoretical and experimental values for proton NMR chemical shifts (deltaH) are used to confirm the minimal interactions between water and the CCl4. Calculated ab initio values and semiempirical values for oxygen-17 and deuterium quadrupole coupling constants (chi) of water/CCl4 clusters are reported. Experimental values for the 17O, 2H, and 1H NMR spin-lattice relaxation times, T1, of 0.03 mole percent water in dilute CCl4 solution at 291 K are 94+/-3 ms, 7.0+/-0.2 s, and 12.6+/-0.4 s, respectively. These T1 values for bulk water are also referenced. "Experimental" values for the quadrupole coupling constants and relaxation times are used to obtain accurate, experimental values for the rotational correlation times for two orthogonal vectors in the water molecule. The average correlation time, tauc, for the position vector of 17O (orthogonal to the plane of the molecule) in monomer water, H2(17)O, is 91 fs. The average value for the deuterium correlation time for the deuterium vector in 2H2O is 104 fs; this vector is along the OD bond. These values indicate that the motion of monomer water in CCl4 is anisotropic. At 291 K, the oxygen rotational correlation time in bulk 2H2(17)O is 2.4 ps, the deuterium rotational correlation time in the same molecule is 3.25 ps. (Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123, 8047.) These values are a factor of about 20 longer than the tauc value for dilute monomer water in CCl4.  相似文献   

4.
The crystal structure of 2-butylamino-6-methyl-4-nitropyridine N-oxide (2B6M) was resolved on the basis of X-ray diffraction. Solid 2B6M occurs in the form of a doubly hydrogen-bonded dimer with squarelike hydrogen-bonding network composed of two intra- (2.556(2) A) and two intermolecular (2.891(2) A) N-H...O type hydrogen bonds. The molecule thus has both a protonable and a deprotonable group that led us to investigate the possibility of an excited-state proton transfer (ESIPT) reaction in different solvents by means of experimental absorption, steady state, and time-resolved emission spectroscopy. The results were correlated with quantum mechanical TD-DFT and PM3 calculations. Experimental and theoretical findings show the possibility of an ESIPT reaction in polar solvents. It is demonstrated that in particular the emission spectra of 2B6M are very sensitive to solvent properties, and a large value of the Stokes shift (about 8000 cm(-1)) in acetonitrile is indicative for an ESIPT process. This conclusion is further supported by time-resolved fluorescence decay measurents that show dual exponential decay in polar solvents. Vertical excitation energies calculated by TD-DFT reproduce the experimental absorption maxima in nonpolar solvents well. The majority of electronic transitions in 2B6M is of pi --> pi* character with a charge shift from the electron-donating to the electron-accepting groups. The calculations show that, due to the charge redistribution on excitation, the acidity of the amino group increases significantly, which facilitates the proton transfer from the amino to the N-oxide group in the excited state.  相似文献   

5.
We report a liquid-phase time-resolved X-ray diffraction study that resolves the molecular structures of the short-lived intermediates formed in the photodissociation of tetrabromomethane in methanol. Time-resolved X-ray diffraction can detect all chemical species simultaneously, and the diffraction signal from each chemical species can be quantitatively calculated from molecular structures and compared with experimental data with high accuracy and precision. The photochemistry of carbon tetrahalides has long been explored to describe their reactions in the natural environment due to its relevance to ozone depletion. Excited with an ultraviolet optical pulse, the complicated photodissociation dynamics of CBr4 was followed in a wide temporal range from picoseconds up to microseconds and associated rate coefficients were determined by analyzing time-resolved diffraction patterns accumulated from 100 ps X-ray pulses. The homolytic cleavage of one C-Br bond in the parent CBr4 molecule yields the CBr3 and Br radicals, which escape from the solvent cage and combine nongeminately to form C2Br6 and Br2, respectively. C2Br6 eventually decays to give C2Br4 and Br2 as final stable products. Our diffraction data at the current signal-to-noise ratio could not provide any evidence for the geminate recombination of the CBr3 and Br radicals to form the Br2CBr-Br isomer or the solvated ion pair, implying that their formation is a minor channel compared with those observed clearly by time-resolved diffraction in this work.  相似文献   

6.
The free energy of solvation for a large number of representative solutes in various solvents has been calculated from the polarizable continuum model coupled to molecular dynamics computer simulation. A new algorithm based on the Voronoi-Delaunay triangulation of atom-atom contact points between the solute and the solvent molecules is presented for the estimation of the solvent-accessible surface surrounding the solute. The volume of the inscribed cavity is used to rescale the cavitational contribution to the solvation free energy for each atom of the solute atom within scaled particle theory. The computation of the electrostatic free energy of solvation is performed using the Voronoi-Delaunay surface around the solute as the boundary for the polarizable continuum model. Additional short-range contributions to the solvation free energy are included directly from the solute-solvent force field for the van der Waals-type interactions. Calculated solvation free energies for neutral molecules dissolved in benzene, water, CCl4, and octanol are compared with experimental data. We found an excellent correlation between the experimental and computed free energies of solvation for all the solvents. In addition, the employed algorithm for the cavity creation by Voronoi-Delaunay triangulation is compared with the GEPOL algorithm and is shown to predict more accurate free energies of solvation, especially in solvents composed by molecules with nonspherical molecular shapes.  相似文献   

7.
We study the hydrogen abstraction reaction from pentane by chlorine radicals using four different experimental approaches. We use two different solvents (CH2Cl2 and CCl4) and two different chlorine atom sources (photodissociation of dissolved Cl2 and two-photon photolysis of the solvent) to investigate their effects on the recombination and reactivity of the chlorine radical. All four experimental schemes involve direct probing of the transient chlorine population via a charge transfer transition with a solvent molecule. In one of the four approaches, photolysis of Cl2 in dichloromethane, we also monitor the nascent reaction products (HCl) by transient vibrational spectroscopy. Probing both the reactants and the products provides a comprehensive view of this bimolecular reaction in solution. Between one-third and two-thirds of the chlorine radicals that initially escape the solvent cage undergo diffusive geminate recombination with their partner radical (either another chlorine atom or the solvent radical). The rest react with pentane with the bimolecular rate constants k(bi) = (9.5 +/- 0.7) x 10(9) M(-1) s(-1) in CH2Cl2 and k(bi) = (7.4 +/- 2) x 10(9) M(-1) s(-1) in CCl4. The recombination yield phi(rec) depends on both the chlorine atom precursor and the solvent and is larger in the more viscous carbon tetrachloride solutions. The bimolecular reaction rate k(bi) depends only on the solvent and is consistent with a nearly diffusion-limited reaction.  相似文献   

8.
四氯化碳液相催化加氢反应动力学的研究   总被引:10,自引:0,他引:10  
氯氟烃的生产工艺中 ,甲烷氯化生产甲烷氯化物是其中重要的一步 ,因此必然伴有大量的四氯化碳生成。由于氯氟烃和四氯化碳的臭氧破坏系数(ODP)值比较高[1] ,为了保护人类赖以生存的环境 ,根据“蒙特利尔公约”规定 ,我国目前已经禁止出口四氯化碳 ,对氯氟烃的出口也采取了许可证制度 ,并进行限制生产 ,准备逐步淘汰 ,因此对于大量四氯化碳和氯氟烃的处理成了人们普遍关注的一个重要问题。目前把大量的四氯化碳和氯氟烃转化为相应消耗臭氧指数较低的化合物则是比较现实的途径 ,选择性催化加氢脱氯就是其中一种有效的方法。四氯化碳催化加…  相似文献   

9.
The field-induced alignment of a smectic-A phase is, in principle, a complicated process involving the director rotation via the interaction with the field and the layer rotation via the molecular interactions. Time-resolved nuclear magnetic resonance spectroscopy has revealed this complexity in the case of the director alignment, but provides no direct information on the motion of the layers. Here we describe a time-resolved x-ray diffraction experiment using synchrotron radiation to solve the challenging problem of capturing the diffraction pattern on a time scale which is fast in comparison with that for the alignment of the smectic layers. We have investigated the alignment of the smectic-A phase of 4-octyl-4(')-cyanobiphenyl by a magnetic field. The experiment consists of creating a monodomain sample of the smectic-A phase by slow cooling from the nematic phase in a magnetic field with a flux density of 7 T. The sample is then turned quickly through an angle phi(0) about an axis parallel to the x-ray beam direction but orthogonal to the field. A sequence of two-dimensional small angle x-ray diffraction patterns are then collected at short time intervals. Experiments were carried out for different values of phi(0), and at different temperatures. The results show that the alignment behavior changes fundamentally when phi(0) exceeds 45 degrees, and that there is a sharp change in the alignment process when the temperature is less than 3 degrees C below the smectic-A-nematic transition. The results of the x-ray experiments are in broad agreement with the NMR results, but reveal major phenomena concerning the maintenance of the integrity of the smectic-A layer structure during the alignment process.  相似文献   

10.
Time-resolved X-ray solution scattering provides a powerful method for investigating reaction dynamics in the solution phase. Since X-rays scatter from all atoms in the solution sample, the scattering intensity is contributed from not only the solute but also the solvent and the solute–solvent cross terms. For a typical concentration the solvent molecules outnumber the solute molecules and thus the relative sensitivity of the scattering intensity to the solute structure is extremely low. To increase the structural sensitivity to the solute and to extract only the signal from structural changes, time-resolved difference scattering signal is obtained by subtracting the original raw scattering curve at a negative reference time delay from that at a positive time delay. Here we show and emphasize that time-resolved difference X-ray scattering curves generally exhibit higher structural sensitivity to the solute molecular structure and lower influence from experimental background and imperfection of theory than original raw scattering curves. These characteristics justify the validity of fitting models to difference curves to obtain transient structural information even when the magnitude of the time-resolved difference curves is smaller than the discrepancy between the theory and experiment for the original scattering curve. We considered small molecules and proteins in solution probed by time-resolved X-ray solution scattering.  相似文献   

11.
We investigate the structural dynamics of iodine elimination reaction of 1,2-diiodoethane (C(2)H(4)I(2)) in cyclohexane by applying time-resolved X-ray liquidography (TRXL). The TRXL technique combines structural sensitivity of X-ray diffraction and 100 ps time resolution of X-ray pulses from synchrotron and allows direct probing of transient structure of reacting molecules. From the analysis of time-dependent X-ray solution scattering patterns using global fitting based on DFT calculation and MD simulation, we elucidate the kinetics and structure of transient intermediates resulting from photodissociation of C(2)H(4)I(2). In particular, the effect of solvent on the reaction kinetics and pathways is examined by comparison with an earlier TRXL study on the same reaction in methanol. In cyclohexane, the C(2)H(4)I radical intermediate undergoes two branched reaction pathways, formation of C(2)H(4)I-I isomer and direct dissociation into C(2)H(4) and I, while only isomer formation occurs in methanol. Also, the C(2)H(4)I-I isomer has a shorter lifetime in cyclohexane by an order of magnitude than in methanol. The difference in the reaction dynamics in the two solvents is accounted for by the difference in solvent polarity. In addition, we determine that the C(2)H(4)I radical has a bridged structure, not a classical structure, in cyclohexane.  相似文献   

12.
Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental observables related to the phenol hydroxyl stretching mode, i.e., the two dimensional infrared vibrational echo spectrum as a function of time, which directly displays the formation and dissociation of the complex through the growth of off-diagonal peaks, and the linear absorption spectrum, which displays two hydroxyl stretch peaks, one for the complex and one for the free phenol. The results of the simulations are compared to previously reported experimental data and are found to be in quite reasonable agreement. The electronic structure calculations show that the complex is T shaped. The classical potential used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level of the electronic structure calculations. A variety of other features is extracted from the simulations including the relationship between the structure and the projection of the electric field on the hydroxyl group. The fluctuating electric field is used to determine the hydroxyl stretch frequency-frequency correlation function (FFCF). The simulations are also used to examine the number distribution of benzene and CCl4 molecules in the first solvent shell around the phenol. It is found that the distribution is not that of the solvent mole fraction of benzene. There are substantial probabilities of finding a phenol in either a pure benzene environment or a pure CCl4 environment. A conjecture is made that relates the FFCF to the local number of benzene molecules in phenol's first solvent shell.  相似文献   

13.
Extracting transient structural information of a solute from time-resolved x-ray diffraction (TRXD) data is not trivial because the signal from a solution contains not only the solute-only term as in the gas phase, but also solvent-related terms. To obtain structural insights, the diffraction signal in q space is often Fourier sine transformed (FT) into r space, and molecular dynamics (MD) simulation-aided signal decomposition into the solute, cage, and solvent terms has so far been indispensable for a clear-cut assignment of structural features. Here we present a convenient method of comparative structural analysis without involving MD simulations by incorporating only isolated-species models for the solute. FT is applied to both the experimental data and candidate isolated-solute models, and comparison of the correlation factors between the experimental FT and the model FTs can distinguish the best candidate among isolated-solute models for the reaction intermediates. The low q region whose influence by solvent-related terms is relatively high can be further excluded, and this mode of truncated Fourier transform (TFT) improves the correlation factors and facilitates the comparison. TFT analysis has been applied to TRXD data on the photodissociation of C(2)H(4)I(2) in two different solvents (methanol and cyclohexane), HgI(2) in methanol, and I(3) (-) in methanol excited at 267 nm. The results are consistent with previous conclusions for C(2)H(4)I(2) in methanol and HgI(2) in methanol, and the new TRXD data reveal that the C(2)H(4)I transient radical has a bridged structure in cyclohexane and I(3) (-) in methanol decomposes into I+I(2) (-) upon irradiation at 267 nm. This TFT method should greatly simplify the analysis because it bypasses MD simulations.  相似文献   

14.
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.  相似文献   

15.
Synchrotron-based in situ time-resolved x-ray diffraction and x-ray absorption spectroscopies were used to study the behavior of nanostructured {Au+AuO(x)}-CeO(2) catalysts under the water-gas shift (WGS) reaction. At temperatures above 250 degrees C, a complete AuO(x)-->Au transformation was observed with high catalytic activity. Photoemission results for the oxidation and reduction of Au nanoparticles supported on rough ceria films or a CeO(2)(111) single crystal corroborate that cationic Au(delta+) species cannot be the key sites responsible for the WGS activity at high temperatures. The rate determining steps for the WGS seem to occur at the gold-ceria interface, with the active sites involving small gold clusters (<2 nm) and O vacancies.  相似文献   

16.
We consider studies of the atomic and magnetic structure near surfaces by photoelectron diffraction and by the holographic inversion of both photoelectron diffraction data and diffraction data involving the emission of fluorescent x-rays. The current status of photoelectron diffraction studies of surfaces, interfaces, and other nanostructures is first briefly reviewed, and then several recent developments and proposals for future areas of application are discussed. The application of full-solid-angle diffraction data, together with simultaneous characterization by low energy electron diffraction and scanning tunneling microscopy, to the epitaxial growth of oxides and metals is considered. Several new avenues that are being opened up by third-generation synchrotron radiation sources are also discussed. These include site-resolved photoelectron diffraction from surface and interface atoms, the possibility of time-resolved measurements of surface reactions with chemical-state resolution, and circular dichroism in photoelectron angular distributions from both non-magnetic and magnetic systems. The addition of spin to the photoelectron diffraction measurement is also considered as a method for studying short-range magnetic order, including the measurement of surface magnetic phase transitions. This spin sensitivity can be achieved through either core-level multiplet splittings or circular-polarized excitation of spin-orbit-split levels. The direct imaging of short-range atomic structure by both photoelectron holography and two distinct types of x-ray holography involving fluorescent emission is also discussed. Both photoelectron and x-ray holography have demonstrated the ability to directly determine at least approximate atomic structures in three dimensions. Photoelectron holography with spin resolution may make it possible also to study short-range magnetic order in a holographic fashion. Although much more recent in its first experimental demonstrations, x-ray fluorescence holography should permit deriving more accurate atomic images for a variety of materials, including both surface and bulk regions.  相似文献   

17.
A photoinduced redox reaction cycle of Riboflavin (RF) at a water/CCl4 interface was studied directly by means of both steady-state and time-resolved total internal reflection (TIR) fluorescence spectroscopies. The TIR fluorescence spectrum of RF observed at the water/CCl4 interface with the maximum wavelength of 517 nm was assigned to the pi-pi* transition from the excited singlet-state of the isoalloxazine chromophore in RF. Upon prolonged laser irradiation (400 nm) in the presence of N,N-dioctadecyl-[1,3,5]triazine-2,4,6-triamine (DTT) as a guest for RF in the CCl4 phase, on the other hand, a new TIR fluorescence band appeared at around 480 nm. Furthermore, the fluorescence intensity at around 480 nm increased in the presence of acetic acid in the water phase. Detailed studies demonstrated that the new fluorescence band should be ascribed to 1,5-dihydoroflavin (RFH2). The present results indicated that RFH2 was produced through the photoreaction of the RF-DTT hydrogen-bonded complex formed at the water/CCl4 interface, whose reaction mechanisms were discussed on the basis of the results observed by fluorescence spectra/dynamics measurements under the TIR conditions as well as by transient absorption spectroscopy.  相似文献   

18.
The ultrafast reaction dynamics following 295-nm photodissociation of Re2CO10 were studied experimentally with 300-fs time resolution in the reactive, strongly coordinating CCl4 solution and in the inert, weakly coordinating hexane solution. Density-functional theoretical (DFT) and ab initio calculations were used to further characterize the transient intermediates seen in the experiments. It was found that the quantum yield of the Re-Re bond dissociation is governed by geminate recombination on two time scales in CCl4, approximately 50 and approximately 500 ps. The recombination dynamics are discussed in terms of solvent caging in which the geminate Re(CO)5 pair has a low probability to escape the first solvent shell in the first few picoseconds after femtosecond photolysis. The other photofragmentation channel resulted in the equatorially solvated dirhenium nonacarbonyl eq-Re2(CO)9(solvent). Theoretical calculations indicated that a structural reorganization energy cost on the order of 6-7 kcal/mol might be required for the unsolvated nonacarbonyl to coordinate to a solvent molecule. These results suggest that for Re(CO)5 the solvent can be treated as a viscous continuum, whereas for the Re2(CO)9 the solvent is best described in molecular terms.  相似文献   

19.
We used time-resolved two-photon photoemission (2PPE) spectroscopy to investigate the photochemical behavior, the interfacial electronic structure, and the fate of photogenerated hot electron for carbon tetrachloride adsorbed on Ag(111). The photodissociation cross section was determined over a wide range of photon energy from 1.62 to 5.69 eV, which suggested a low-lying electron affinity level of adsorbed CCl4. A CCl4-derived unoccupied state located at 3.41 eV above the Fermi level was attributed to an image potential (IP) state based on its binding energy and effective mass. Polarization dependence of the 2PPE signal revealed that the IP state was populated by an indirect excitation process involving scattering of photoexcited hot electrons rather than direct electronic transition from a bulk band. The lifetime of the IP state was much shorter on the CCl4-covered Ag(111) surface than on the clean one, implying that the electron in the IP state is scavenged effectively by CCl4, probably through dissociative attachment to it. These results are significant in the sense that they provide dynamical evidence for a new relaxation pathway of the IP state in addition to the more common pathway involving back transfer of electron to the substrate.  相似文献   

20.
Structures of three dialkyl tartrates, namely, dimethyl tartrate, diethyl tartrate, and diisopropyl tartrate, in CCl4, dimethyl sulfoxide (DMSO)/DMSO-d6, and H2O/D2O solvents have been investigated using vibrational absorption (VA), vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD). VA, VCD, and ORD spectra are found to be dependent on the solvent used. Density functional theory (DFT) calculations are used to interpret the experimental data in CCl4 and DMSO. The trans-COOR conformer with hydrogen bonding between the OH group and the C=O group attached to the same chiral carbon is dominant for dialkyl tartrates both in vacuum and in CCl4. The experimental VA, VCD, and ORD data of dialkyl-D-tartrates in CCl4 correlated well with those predicted for dimethyl-(S,S)-tartrate molecule as both isolated and solvated in CCl4. In DMSO solvent, dialkyl tartrate molecules favor formation of intermolecular hydrogen bonding with DMSO molecules. Clusters of dimethyl-(S,S)-tartrate, with one molecule of dimethyl-(S,S)-tartrate hydrogen bonded to two DMSO molecules, are used for the DFT calculations. A trans-COOR cluster and a trans-H cluster are needed to obtain a reasonable agreement between the predicted and experimental data of dimethyl tartrate in DMSO solvent. VA, VCD, and optical rotations are also measured for dialkyl tartrate-cyclodextrin complexes. It is noted that these properties are barely affected by complexation of dialkyl tartrates with cyclodextrins, indicating weak interaction between tartrates and cyclodextrin. Binding constants of alpha-CD and beta-CD with diethyl L-tartrate in both H2O and DMSO have been determined using isothermal titration calorimetry technique. The smaller binding constants (less than 100) confirmed the weak interaction between tartrates and cyclodextrin in the solution state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号