首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long‐range behavior point of view. We show that for the correct cancellation of divergent long‐range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non‐Coulomb metric fit can be made overlap‐preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xalpha exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.  相似文献   

3.
 Formulas are presented for restricted Hartree–Fock (RHF) calculations on systems with periodicity in one dimension using a basis set of contracted spherical Gaussians. Applying Fourier-space and Ewald-type methods, all lattice sums appearing in the formulation have been brought to forms exhibiting accelerated convergence. Calculations have been carried out for infinite chains of Li2 molecules and a poly(oxymethylene) chain. The methods used here yield results that are far more precise than corresponding direct-space calculations and for the first time show the vanishing of the RHF density of states at the Fermi level for situations of partial band occupancy. Our initial computational implementation was about 5 times slower than the fastest direct-space RHF code, but improvements in special-function evaluations and numerical integrations over the Brillouin zone are shown to remove this disparity in computing speed. Received: 20 August 1999 / Accepted: 17 January 2000 / Published online: 5 June 2000  相似文献   

4.
A scheme is presented for performing linear-combination-of-atomic-orbitals (LCAO ) self-consistent-field (SCF ) ab initio Hartree–Fock calculations of the electronic structure of periodic systems. The main aspects which characterize the present method are (i) a thorough discussion of both translational and local symmetry properties and the derivation of general formulas for the transformation of all the relevant monoelectronic and bielectronic terms under symmetry operators. (ii) The use of general yet powerful criteria for the truncation of infinite sums; in particular, the Coulomb electron–electron interactions are subdivided into terms corresponding to intersecting or nonintersecting charge distributions; the latter are grouped into shell contributions and the interaction is evaluated by multipolar expansions; the exchange interaction may be evaluated with great precision by retaining a relatively small number of two-electron integrals according to a truncation criterion which fully preserves its nonlocal character. (iii) The use of a procedure for performing integrals over k , as needed in the evaluation of the Fermi energy and in the reconstruction of the Fock matrix, which is particularly simple because it employs partially intersecting small spheres as integration subdomains where linear extrapolation is admitted. A comparison is finally made of our fundamental equations in the critical SCF stage with those obtainable by a recent proposal which uses Fourier transforms to express Coulomb and exchange integrals.  相似文献   

5.
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces.  相似文献   

6.
We present here the computational prediction of hybrid organic–inorganic extended lattices. The production of candidate crystal structures is successfully performed by direct-space assembly of building-units using the AASBU (Automated Assembly of Secondary Building Units) method, mixing independent organic and inorganic units. Hybrid candidates that are compatible with the imposed metal:organic ratio are generated with their cell parameters, space group, atomic positions, along with their simulated diffraction pattern. Since no explicit limit regarding the nature, number, and size of the inorganic and organic units, or hybrid building-block is involved, the method offers boundless potential for exploring hybrid frameworks in terms of the topological diversity. The most appealing development arises from the computer-assisted design of hybrid frameworks. Indeed, in a significant number of systems, it is well-known that controlled synthesis conditions can promote the occurrence of specific building-units, which serve to “propagate” the infinite crystal structure. We believe that the computational approach presented herein is valuable to create virtual libraries of viable hybrid polymorphs. We further show how it has proven to be, for the first time in the realm of hybrids, a tangible route towards structure solution in direct space, exemplified here with the computational structure determination of two complex hybrid structures, MIL-100 and MIL-101. This challenging area is of special interest when high quality diffraction data are not available or when very large cell sizes are involved. The development of a structural model in direct space, starting with minimal knowledge such as the metal:organic ratio, is shown here to be possible. With such a method in hand, formerly intractable structural problems when using methods based on conventional reciprocal space become feasible in direct space.  相似文献   

7.
The application of theoretical methods based on density-functional theory is known to provide atomic and cell parameters in very good agreement with experimental values. Recently, construction of the exact Hartree-Fock exchange gradients with respect to atomic positions and cell parameters within the Gamma-point approximation has been introduced. In this article, the formalism is extended to the evaluation of analytical Gamma-point density-functional atomic and cell gradients. The infinite Coulomb summation is solved with an effective periodic summation of multipole tensors. While the evaluation of Coulomb and exchange-correlation gradients with respect to atomic positions are similar to those in the gas phase limit, the gradients with respect to cell parameters needs to be treated with some care. The derivative of the periodic multipole interaction tensor needs to be carefully handled in both direct and reciprocal space and the exchange-correlation energy derivative leads to a surface term that has its origin in derivatives of the integration limits that depend on the cell. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm to optimize one-dimensional and three-dimensional periodic systems at the density-functional theory and hybrid Hartree-Fock/density-functional theory levels. We also report the full relaxation of forsterite supercells at the B3LYP level of theory.  相似文献   

8.
We present a density fitted local configuration interaction singles (CIS) method for calculating optical band gaps in 1D-periodic systems. The method is based on the Davidson diagonalization procedure, carried out in the reciprocal space. The one-electron part of the matrix-vector products is also evaluated in the reciprocal space, where the diagonality of the Fock matrix can be exploited. The contraction of the CIS vectors with the two electron integrals is performed in the direct space in the basis of localized occupied (Wannier) and virtual (projected atomic) orbitals. The direct space approach allows to utilize the sparsity of the integrals due to the local representation and locality of the exciton. The density fitting approximation employed for the two electron integrals reduces the nominal scaling with unit cell size to O(N(4)). Test calculations on a series of prototypical systems demonstrate that the method in its present stage can be used to calculate the excitonic band gaps of polymers with up to a few dozens of atoms in the cell. The computational cost depends on the locality of the exciton, but even relatively delocalized excitons occurring in the polybiphenyl in the parallel orientation, can be routinely treated with this method.  相似文献   

9.
It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of Coulomb integrals are the most frequently encountered. As the molecular system gets larger, computation of these integrals becomes one of the most laborious and time consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to a further development in computational studies of large molecular systems. The atomic orbital basis functions chosen in the present work are Slater type functions. These functions can be expressed as finite linear combinations of B functions which are suitable to apply the Fourier transform method. The difficulties of the numerical evaluation of the analytic expressions of the integrals of interest arise mainly from the presence of highly oscillatory semi-infinite integrals. In this work, we present a generalized algorithm based on the nonlinear transformation of Sidi, for a precise and fast numerical evaluation of molecular integrals over Slater type functions and over B functions. Numerical results obtained for the three-center two-electron Coulomb and hybrid integrals over B functions and over Slater type functions. Comparisons with numerical results obtained using alternatives approaches and an existing code are listed.  相似文献   

10.
A three-dimensional Ewald summation formula with a shape-dependent correction term for Coulomb interactions in systems with one-dimensional periodicity is derived. Test molecular dynamics simulations of acetone molecules in cylindrical silica pores show that the formula is efficient only when size of the system in a plane perpendicular to the periodicity direction is small in comparison with the periodicity length.  相似文献   

11.
The Breit interaction consists of two interactions of the magnetic and the retardation terms. The molecular integrals involving the former interaction are shown to be reduced to the familiar integrals of the Coulomb repulsion. The integrals involving the latter interaction are formulated over the Laguerre Gaussian-type functions and some advantages of the formulation are discussed. Bayman's gradient formula of the solid spherical harmonic is generalized to include the gradient of the homogeneous solid spherical harmonic.  相似文献   

12.
We present recent developments in the implementation of the density fitting approach for the Coulomb interaction within the four-component formulation of relativistic density functional theory [Belpassi et al., J. Chem. Phys. 124, 124104 (2006)]. In particular, we make use of the Poisson equation to generate suitable auxiliary basis sets and simplify the electron repulsion integrals [Manby and Knowles, Phys. Rev. Lett. 87, 163001 (2001)]. We propose a particularly simple and efficient method for the generation of accurate Poisson auxiliary basis sets, based on already available standard Coulomb fitting sets. Just as is found in the nonrelativistic case, we show that the number of standard auxiliary fitting functions that need to be added to the Poisson-generated functions in order to achieve a fitting accuracy equal or, in some cases, better than that of the standard procedure is remarkably small. The efficiency of the present implementation is demonstrated in a detailed study of the spectroscopic properties and energetics of several gold containing systems, including the Au dimer and the CsAu molecule. The extraction reaction of a H(2)O molecule from a Au(H(2)O)(9) (+) cluster is also calculated as an example of mixed heavy-light-atom molecular systems. The scaling behavior of the algorithm implemented is illustrated for some closed shell gold clusters up to Au(5) (+). The increased sparsity of the Coulomb matrices involved in the Poisson fitting is identified, as are potential computational applications and the use of the Poisson fitting for the relativistic exchange-correlation problem.  相似文献   

13.
14.
The reciprocal form factor of N‐electron closed shells systems in a bare Coulomb field is shown to be a spherically symmetric, positive, and decreasing function of the radial distance. Nonmonotonicities of the reciprocal form factor appear when studying bare Coulomb field open‐shell systems. Analysis of the weight of the interelectronic repulsion term is carried out for some isoelectronic series as well as neutral atoms with N = 1–103. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

15.
A general and efficient implementation of the coupled perturbed Hartree-Fock (CPHF) scheme in the CRYSTAL06 code that applies to systems periodic in one dimension (polymers), two dimensions (slabs), three dimensions (crystals) and, as a limiting case, zero dimension (molecules) is presented. The dielectric tensor of large unit cell systems such as boehmite (gamma-AlOOH, 8 atoms/cell), calcite (CaCO3, 10 atoms/cell), and pyrope (Mg3Al2Si3O12, 80 atoms/cell) has been computed. Results are well converged with respect to the computational parameters, in particular, to the number of k points in the reciprocal space and tolerances used in the truncation of the Coulomb and exchange series, showing that the same standard computational conditions used for the self-consistent-field (SCF) step can also be used safely in a CPHF calculation. Point symmetry, being so important in determining crystal properties, also reduces dramatically the computational cost both of the preliminary SCF step and the CPHF calculation, so that the dielectric tensor for large unit cell systems such as pyrope can be computed within 2 CPU hours on a single processor PC.  相似文献   

16.
A density fitting approach for the Coulomb matrix representation within the four-component formulation of relativistic density-functional theory is presented. Our implementation, which uses G-spinor basis sets, shares all the advantages of those found in nonrelativistic quantum chemistry. We show that very accurate Coulomb energies may be obtained using a modest number of scalar auxiliary basis functions for molecules containing heavy atoms. The efficiency of this new implementation is demonstrated in a detailed study of the spectroscopic properties of the gold dimer, and its scaling behavior has been tested by calculations of some closed-shell gold clusters (Au2, Au3+, Au4, Au5+). The algorithm is found to scale as O(N3), just as it does in the nonrelativistic case, and represents a dramatic improvement in efficiency over the conventional approach in the calculation of the Coulomb matrix, with computation times that are reduced to less than 3% for Au2 and up to 1% in the case of Au5+.  相似文献   

17.
An efficient algorithm for the calculation of short-range Coulomb energies is examined. The algorithm uses a boxing scheme and a prescreening for negligible integrals to evaluate the short-range Coulomb energy via computational work that scales only linearly with the size of the system. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 921–927, 1999  相似文献   

18.
The new translation method for Slater-type orbitals (STOs) previously tested in the case of the overlap integral is extended to the calculation of two-center two-electron molecular integrals. The method is based on the exact translation of the regular solid harmonic part of the orbital followed by the series expansion of the residual spherical part in powers of the radial variable. Fair uniform convergence and stability under wide changes in molecular parameters are obtained for all studied two-center hybrid, Coulomb, and exchange repulsion integrals. Ten-digit accuracy in the final numerical results is achieved through multiple precision arithmetic calculation of common angular coefficients and Gaussian numerical integration of some of the analytical formulas resulting for the radial integrals. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 91–100, 2000  相似文献   

19.
Green's Coulomb function for negative values of energy is applied to the calculation of sums and integrals arising in second-order field form of atomic perturbation theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号