首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multireference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation.Our best estimates for the vertical excitation energies for the lowest singlet n --> pi* and pi --> pi* are 5.0 +/- 0.1 eV and 5.3 +/- 0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and +/- 0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A" and A' states leading to intensity borrowing by the forbidden transition.  相似文献   

2.
The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.  相似文献   

3.
The absolute cross sections for electronic excitations of thymine by electron impact between 5 and 12 eV are determined by means of electron-energy loss (EEL) spectroscopy for the molecule deposited at submonolayer coverage on an inert Ar substrate. The lowest EEL features at 3.7 and 4.0 eV are attributed to the excitation of the triplet 1 3A'(pi --> pi*) and 1 3A'(n --> pi*) valence states of the molecule. The higher EEL features located at 4.9, 6.3, 7.3, and 9 eV with a weak shoulder around 6 eV are ascribed mostly to triplet valence (pi --> pi*) excitation manifold of the molecule. The energy dependence of the cross section for both the lowest triplet valence excitations shows essentially a peak at about 5 eV reaching a value of 2.9 x 10(-17) cm2. The cross sections for the higher EEL features are generally characterized by a common broad maximum around 8 eV. The latter reaches a value of 1.36 x 10(-16) cm2 for the combined 6 and 6.3 eV excitation region. The maxima in the present cross sections are found to correspond to the resonances that have been reported at about the same energies in the O- yield from electron impact on thymine in the gas phase.  相似文献   

4.
Generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structures is applied to examine the azabenzene series: benzene, pyridine, pyrazine, symmetric triazine and symmetric tetrazine. The spectra of azabenzenes are complex with large numbers of excited states at low energies comprising n --> pi* and pi --> pi* excited states and also doubly excited states of the n,n --> pi*,pi* type. The calculations are complicated due to strong correlation effects in the nitrogen lone-pair orbitals and the pi electrons. This study is the first to use GVVPT2 on conjugated systems. Comparison is made with experimental data and complete active space second-order perturbation theory, equation of motion coupled cluster and similarity transformed equation of motion coupled cluster theory data. Using polarized valence double split basis sets for benzene and pyrazine (cc-pVDZ) and pyridine (ANO-S) and polarized triple split basis sets (ANO-L) for triazine and tetrazine, the n --> pi* and pi --> pi* states are computed with an average error of 0.28 eV in comparison with available experimental data.  相似文献   

5.
Combined density functional and multireference configuration interaction methods have been used to calculate the electronic spectrum of 9H-adenine, the most stable tautomer of 6-aminopurine. In addition, constrained minimum energy paths on excited potential energy hypersurfaces have been determined along several relaxation coordinates. The minimum of the first (1)[n-->pi*] state has been located at an energy of 4.54 eV for a nuclear arrangement in which the amino group is pyramidal whereas the ring system remains planar. Close by, another minimum on the S(1) potential energy hypersurface has been detected in which the C(2) center is deflected out of the molecular plane and the electronic character of S(1) corresponds to a nearly equal mixture of (1)[pi-->pi*] and (1)[n-->pi*] configurations. The adiabatic excitation energy of this minimum amounts to 4.47 eV. Vertical and adiabatic excitation energies of the lowest n-->pi* and pi-->pi* transitions as well as transition moments and their directions are in very good agreement with experimental data and lend confidence to the present quantum chemical treatment. On the S(1) potential energy hypersurface, an energetically favorable path from the singlet n-->pi* minimum toward a conical intersection with the electronic ground state has been identified. Close to the conical intersection, the six-membered ring of adenine is strongly puckered and the electronic structure of the S(1) state corresponds to a pi-->pi* excitation. The energetic accessibility of this relaxation path at about 0.1 eV above the singlet n-->pi* minimum is presumably responsible for the ultrafast decay of 9H-adenine after photoexcitation and explains why sharp vibronic peaks can only be observed in a rather narrow wavelength range above the origin. The detected mechanism should be equally applicable to adenosine and 9-methyladenine because it involves primarily geometry changes in the six-membered ring whereas the nuclear arrangement of the five-membered ring (including the N(9) center) is largely preserved.  相似文献   

6.
Site- and element-selective core-to-pi* excitation in free pyridine clusters is investigated. The experimental results indicate the occurrence of site- and size-dependent spectral shifts in the C 1s and N 1s --> pi* excitation regime. Specifically, we observe in the C 1s regime a substantial and site-dependent redshift of the low energy slopes of the C 1s --> pi* band by 90 meV in clusters relative to the bare molecule, whereas the high energy slopes of this band remain almost unchanged. In contrast, a size-dependent blueshift of the same order of magnitude is found for the entire N 1s --> pi* band. This is distinctly different from previous results on van der Waals clusters, where exclusively redshifts in 1s --> pi* transitions are observed. The experimental results are compared to ab initio calculations, which serve to simulate the 1s --> pi*( v = 0) transitions. These results clearly indicate that the spectral shifts are primarily a result of electrostatic interactions between the molecular moieties and that an antiparallel orientation of molecular units preferably dominates in variable-size pyridine clusters.  相似文献   

7.
The low-lying excited singlet states of the keto, enol, and keto-imine tautomers of cytosine have been investigated employing a combined density functional/multireference configuration interaction (DFT/MRCI) method. Unconstrained geometry optimizations have yielded out-of-plain distorted structures of the pi --> pi and n --> pi excited states of all cytosine forms. For the keto tautomer, the DFT/MRCI adiabatic excitation energy of the pi --> pi state (4.06 eV including zero-point vibrational energy corrections) supports the resonant two-photon ionization (R2PI) spectrum (Nir et al. Phys. Chem. Chem. Phys. 2002, 5, 4780). On its S1 potential energy surface, a conical intersection between the 1pipi state and the electronic ground state has been identified. The barrier height of the reaction along a constrained minimum energy path amounts to merely 0.2 eV above the origin and explains the break-off of the R2PI spectrum. The 1pipi minimum of the enol tautomer is found at considerably higher excitation energies (4.50 eV). Because of significant geometry shifts with respect to the ground state, long vibrational progressions are expected, in accord with experimental observations. For the keto-imine tautomer, a crossing of the 1pipi potential energy surface with the ground-state surface has been found, too. Its n --> pi minimum (3.27 eV) is located well below the conical intersection between the pi --> pi and S0 states, but it will be difficult to observe because of its small transition moment. The identified conical intersections of the pi --> pi excited states of the keto cytosine tautomers are made responsible for the ultrafast decay to the electronic ground states and thus may explain their subpicoseconds lifetimes.  相似文献   

8.
The ground state and the excited states of benzene, pyrimidine, and pyrazine have been examined by using the symmetry adapted cluster-configuration interaction (SAC-CI) method. Detailed characterizations and the structures of the absorption peaks in the vacuum ultraviolet (VUV), low energy electron impact (LEEI), and electron energy loss (EEL) spectra were theoretically clarified by calculating the excitation energy and the oscillator strength for each excited state. We show that SAC-CI has the power to well reproduce the electronic excitation spectra (VUV, LEEI, and EEL) simultaneously to an accuracy for both the singlet and the triplet excited states originated from the low-lying pi --> pi*, n --> pi*, pi --> sigma* and n --> sigma* excited states of the titled compounds. The present results are compared with those of the previous theoretical studies by methods, such as EOM-CCSD(T), STEOM-CCSD, CASPT2 and TD-B3LYP, etc.  相似文献   

9.
N-alkoxypyridine-2(1H)thiones serve as valuable photochemical alkoxyl radical precursors in photobiological studies, but due to a broad absorption band at about 360 nm (pi --> pi* excitation), these molecules decompose readily when exposed to daylight. The goal of the present work is to propose N-alkoxypyridine-2(1H)thiones which due to a blue shift of this band become more stable with respect to daylight and consequently are easier to handle. The shift of the pi --> pi* excitation toward shorter wave length shall be achieved by substituents introduced at the pyridine heterocycle. To study the substituent effects, excitations to the first to singlet states were calculated applying the CASPT2 approach and time dependent density functional theory (TD-DFT). The study indeed showed that electron rich substituents (like the methoxylgroup) at the positions 3, 4, and 6 of the pyridinethione heterocycle yield the desired hypsochromic shift. A free rotation of the substituent, however, is expected to quench these effects. Fluorine atoms, employed to model the influence of electron withdrawing substituents, induce also a blue shift for a substitution at the 3, 4, and 6 positions. For the multiply fluorinated molecule N-methoxy-3,4,6-trifluorinepyridine-2(1H)thione a blue shift of even 24 nm is predicted. Substituents that can conjugate with the pi electrons of the heterocycle (NO2 served as a model) only induce strong bathochromic shifts on the pi --> pi* excitation energy and therefore are not able to eliminate the daylight sensitivity of the precursor molecules.  相似文献   

10.
A new method which we refer to as vertical Franck-Condon is proposed to calculate electronic absorption spectra of polyatomic molecules. In accord with the short-time picture of spectroscopy, the excited-state potential energy surface is expanded at the ground-state equilibrium geometry and the focus of the approach is more on the overall shape of the spectrum and the positions of the band maxima, rather than the precise position of the 0-0 lines. The Born-Oppenheimer approximation and the separability of the excited-state potential energy surface along the excited-state normal mode coordinates are assumed. However, the potential surface is not necessarily approximated as harmonic oscillator potentials along the individual normal modes. Instead, depending upon the nature of the potential surface along a particular normal mode, it is treated either in the harmonic approximation or the full one-dimensional potential is considered along this mode. The vertical Franck-Condon approach is applicable therefore even in cases where the excited state potential energy surface is highly anharmonic and the conventional harmonic Franck-Condon approach is inadequate. As an application of the method, the ultraviolet spectrum of ethylene between 6.2 eV (50,000 cm(-1)) and 8.7 eV (70,000 cm(-1)) is simulated, using the Similarity Transformed Equation of Motion Coupled-Cluster method to describe the required features of the potential energy surfaces. The spectrum is shown to be a result of sharp doublet structures stemming from the pi --> 3s (Rydberg) state superimposed on top of a broad band resulting from the pi --> pi* (valence) state. For the Rydberg state, the symmetric C=C stretch and the torsion mode contribute to the spectrum, while the broad valence band results from excitation into the C=C stretch, CH2 scissors, and the torsion mode. For both states, the potential along the torsion mode is highly anharmonic and the full treatment of the potential along this mode in the vertical Franck-Condon method is required.  相似文献   

11.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

12.
13.
In a recent study Redlich et al. [Redlich et al., Chem. Phys. Lett. 2006, 420, 110] measured the velocity distribution of CO molecules desorbing from a NiO(100) surface after irradiation with an ultraviolet (UV) laser pulse. Due to the complexity of the involved processes no experimental evidence on the excitation and desorption mechanism could be obtained. In recent ab initio studies Mehdaoui et al. [Mehdaoui et al., Phys. Rev. Lett. 2007, 98, 037601] have shown that a 5sigma --> 2pi* (a (3)Pi) like transition within the CO adsorbate is most likely the crucial excitation step in the CO-NiO(100) system. At first sight this seems unlikely, since the interaction of CO molecules with the NiO(100) surface is very weak (-0.30 eV) and the corresponding CO gas phase transition energy is about 1.5 eV higher than the laser pulse energy of 4.66 eV used in the experiment. In this work we give further insight into relevant electronically excited states and identify the desorption mechanism by analysing the dynamical processes after laser excitation by quantum dynamical wave packet simulations on the basis of three-dimensional (3D) ab initio potential energy surfaces. The results corroborate the so far discussed excitation mechanism, which proposes the formation of a genuine C-Ni bond as the driving force for photodesorption, as the crucial excitation step.  相似文献   

14.
The novel charge-transfer ground state found in alpha,alpha'-diimine adducts of ytterbocene (C(5)Me(5))(2)Yb(L) [L = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen)] in which an electron is spontaneously transferred from the f(14) metal center into the lowest unoccupied (pi*) molecular orbital (LUMO) of the diimine ligand to give an f(13)-L(*)(-) ground-state electronic configuration has been characterized by cyclic voltammetry, UV-vis-near-IR electronic absorption, and resonance Raman spectroscopies. The voltammetric data demonstrate that the diimine ligand LUMO is stabilized and the metal f orbital is destabilized by approximately 1.0 V each upon complexation for both bpy and phen adducts. The separation between the ligand-based oxidation wave (L(0/-)) and the metal-based reduction wave (Yb(3+/2+)) in the ytterbocene adducts is 0.79 V for both bpy and phen complexes. The UV-vis-near-IR absorption spectroscopic data for both the neutral adducts and the one-electron-oxidized complexes are consistent with those reported recently, but previously unreported bands in the near-IR have been recorded and assigned to ligand (pi*)-to-metal (f orbital) charge-transfer (LMCT) transitions. These optical electronic excited states are the converse of the ground-state charge-transfer process (e.g., f(13)-L(*-) <--> f(14)-L(0)). These new bands occur at approximately 5000 cm(-1) in both adducts, consistent with predictions from electrochemical data, and the spacings of the resolved vibronic bands in these transitions are consistent with the removal of an electron from the ligand pi* orbital. The unusually large intensity observed in the f --> f intraconfiguration transitions for the neutral phenanthroline adduct is discussed in terms of an intensity-borrowing mechanism involving the low-energy LMCT states. Raman vibrational data clearly reveal resonance enhancement for excitation into the low-lying pi* --> pi* ligand-localized excited states, and comparison of the vibrational energies with those reported for alkali-metal-reduced diimine ligands confirms that the ligands in the adducts are reduced radical anions. Differences in the resonance enhancement pattern for the modes in the bipyridine adduct with excitation into different pi* --> pi* levels illustrate the different nodal structures that exist in the various low-lying pi* orbitals.  相似文献   

15.
16.
A theoretical study on the origin of the common electronic excitations in amino acids is presented, focusing on the excited states of glycine, alanine and the related substructures formic acid, acetic acid, propionic acid, ammonia, methylamine, and ethylamine. Special attention is given to the valence excitation from the nonbonding lone-pair on the carboxylic oxygen atom to the antibonding pi-orbital (n(O) --> pi*(CO)) and the first Rydberg excitation from the nonbonding lone-pair on the nitrogen atom (n(N) --> 3s). From extensive calculations on formic acid and methylamine, different basis sets and electron correlation treatments are benchmarked using a hierarchy of coupled cluster (CC) methods, consisting of CCS, CC2, CCSD, CCSDR(3), and CC3, in combination with augmented correlation consistent basis sets. The dependence of the excitation energies on the size of the backbone structure in the two groups of molecules is investigated, and 0-0 transition energies for the n(O) --> pi*(CO) and n(N) --> 3s transitions are calculated for the smallest molecules. Excellent agreement with experimental values is found where secure experimental assignments are available. A few outstanding problems in the experimental assignments found in the literature are described for both the carboxylic acids and the amines. Final predictions for vertical excitation energies are given for all molecules, including glycine and alanine where no gas-phase experimental results are available. Finally, calculations on protonated amino acids are presented showing an isolation of the n(O) --> pi*(CO) from higher lying states by as much as 1.9 eV for alanine.  相似文献   

17.
The performance of the Hartree-Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n-->pi* and pi-->pi* electronic excitation energies of acrolein. All electronic structure methods employed the same solvent model, which is based on the combined quantum mechanics/molecular mechanics approach together with a dynamical averaging scheme. In addition to the predicted solvatochromic effects, we have also performed spectroscopic UV measurements of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n-->pi* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the pi-->pi* electronic transition in solution, whereas the recent CAM-B3LYP functional performs well also in this case. The pi-->pi* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental data.  相似文献   

18.
A generalization of the spin-component scaling and scaled opposite-spin modifications of second-order M?ller-Plesset perturbation theory to the approximate coupled-cluster singles-and-doubles model CC2 (termed SCS-CC2 and SOS-CC2) is discussed and a preliminary implementation of ground and excited state energies and analytic gradients is reported. The computational results for bond distances, harmonic frequencies, adiabatic and 0-0 excitation energies are compared with experimental results to benchmark their performance. It is found that both variants of the spin-scaling increase the robustness of CC2 against strong correlation effects and lead for this method even to somewhat larger improvements than those observed for second-order M?ller-Plesset perturbation theory. The spin-component scaling also enhances systematically the accuracy of CC2 for 0-0 excitation energies for pi --> pi* and n --> pi* transitions, if geometries are determined at the same level.  相似文献   

19.
The electronically excited states of the Si(100) surface and acetylene, benzene, and 9,10-phenanthrenequinone adsorbed on Si(100) are studied with time-dependent density functional theory. The computational cost of these calculations can be reduced through truncation of the single excitation space. This allows larger cluster models of the surface in conjunction with large adsorbates to be studied. On clean Si(100), the low-lying excitations correspond to transitions between the pi orbitals of the silicon-silicon dimers. These excitations are predicted to occur in the range 0.4-2 eV. When organic molecules are adsorbed on the surface, surface --> molecule, molecule --> surface, and electronic excitations localized within the adsorbate are also observed at higher energies. For acetylene and benzene, the remaining pipi* excitations are found to lie at lower energies than in the corresponding gas-phase species. Even though the aromaticity of 9,10-phenanthrenequinone is retained, significant shifts in the pipi* excitations of the aromatic rings are predicted. This is in part due to structural changes that occur upon adsorption.  相似文献   

20.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号