首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer. Our results suggest that the subsurface oxygen binds to the first and second layer Ru atoms, yielding a metastable surface "oxide", which represents the oxidation state of an atomically well ordered Ru(0001) surface under low-temperature oxidation conditions. Accumulation of more than 3 ML of oxygen is possible via defect-promoted penetration below the second layer when the initial Ru(0001) surface is disordered. Despite its higher capacity for oxygen accumulation, also the disordered Ru surface does not show features characteristic for the crystalline RuO2 islands. Development of lateral heterogeneity in the oxygen concentration is evidenced by the Ru 3d(5/2) images and microspot spectra after the onset of oxygen incorporation, which becomes very pronounced when the oxidation is carried out at T > 550 K. This is attributed to facilitated O incorporation and oxide nucleation in microregions with a high density of defects.  相似文献   

2.
With surface X-ray diffraction (SXRD) using a high-pressure reaction chamber we investigated in-situ the oxidation of the Ru(0001) model catalyst under various reaction conditions, starting from a strongly oxidizing environment to reaction conditions typical for CO oxidation. With a mixture of O(2) and CO (stoichiometry, 2:1) the partial pressure of oxygen has to be increased to 20 mbar to form the catalytically active RuO(2)(110) oxide film, while in pure oxygen environment a pressure of 10(-5) mbar is already sufficient to oxidize the Ru(0001) surface. For preparation temperatures in the range of 550-630 K a self-limiting RuO(2)(110) film is produced with a thickness of 1.6 nm. The RuO(2)(110) film grows self-acceleratedly after an induction period. The RuO(2) films on Ru(0001) can readily be reduced by H(2) and CO exposures at 415 K, without an induction period.  相似文献   

3.
The substrate-induced oxidation upon prolonged annealing in UHV of ultrathin films of Ni and Cr vapor deposited on yttria-stabilized zirconia YSZ(100) was studied by X-ray photoelectron spectroscopy (XPS) to obtain information about the oxidation mechanism, determine the available quantity of reactive oxygen in YSZ, and investigate the thermal stability of the thin oxide films. Up to about 0.8 ML of Ni deposited at room temperature was oxidized to NiO at a constant rate at 650 K via the substrate, whereas at slightly higher coverage, the oxidation rate under identical conditions was drastically reduced. In contrast to Ni, up to 4.8 ML of Cr deposited at 275 K could be oxidized via the substrate to Cr2O3 upon extensive UHV annealing at increasing temperature up to 820 K, indicating a reactive oxygen content of at least 4 x 10(-6) with respect to the lattice oxygen in the YSZ specimen. The Cr2O3 decomposed to metallic Cr above about 800 K, whereas NiO was stable up to the maximum temperature of 875 K. These results indicate that the oxidation via the substrate is kinetically analogous to the gas-phase oxidation of bulk Ni and Cr. The reactive oxygen content of the single-crystal YSZ is larger than expected, and part of it is accommodated at the surface of the substrate. The thermal stability of the thin oxide films is determined by the oxygen exchange with YSZ and not by the respective bulk oxide thermodynamic decomposition temperature.  相似文献   

4.
The formation conditions, morphology, and reactivity of thin oxide films, grown on a Rh(110) surface in the ambient of atomic or molecular oxygen, have been studied by means of laterally resolved core level spectroscopy, scanning tunneling microscopy and low energy electron diffraction. Exposures of Rh(110) to atomic oxygen lead to subsurface incorporation of oxygen even at room temperature and facile formation of an ordered, laterally uniform surface oxide at approximately 520 K, with a quasi-hexagonal structure and stoichiometry close to that of RhO(2). In the intermediate oxidation stages, the surface oxide coexists with areas of high coverage adsorption phases. After a long induction period, the reduction of the Rh oxide film with H(2) is very rapid and independent of the coexisting adsorption phases. The growth of the oxide film by exposure of a Rh(110) surface to molecular oxygen requires higher pressures and temperatures. The important role of the O(2) dissociation step in the oxidation process is reflected by the complex morphology of the oxide films grown in O(2) ambient, consisting of microscopic patches of different Rh and oxygen atomic density.  相似文献   

5.
Comparison of the reactivity of different Pd-O species in CO oxidation   总被引:1,自引:0,他引:1  
The reactivity of several Pd-O species toward CO oxidation was compared experimentally, making use of chemically, structurally and morphologically different model systems such as single-crystalline Pd(111) covered by adsorbed oxygen or a Pd(5)O(4) surface oxide layer, an oriented Pd(111) thin film on NiAl oxidized toward PdO(x) suboxide and silica-supported uniform Pd nanoparticles oxidized to PdO. The oxygen reactivity decreased with increasing oxidation state: O(ad) on metallic Pd(111) exhibited the highest reactivity and could be reduced within a few minutes already at 223 K, using low CO beam fluxes around 0.02 ML s(-1). The Pd(5)O(4) surface oxide on Pd(111) could be reacted by CO at a comparable rate above 330 K using the same low CO beam flux. The more deeply oxidized Pd(111) thin film supported on NiAl was already much less reactive, and reduction in 10(-6) mbar CO at T > 500 K led only to partial reduction toward PdO(x) suboxide, and the metallic state of Pd could not be re-established under these conditions. The fully oxidized PdO nanoparticles required even rougher reaction conditions such as 10 mbar CO for 15 min at 523 K in order to re-establish the metallic state. As a general explanation for the observed activity trends we propose kinetic long-range transport limitations for the formation of an extended, crystalline metal phase. These mass-transport limitations are not involved in the reduction of O(ad), and less demanding in case of the 2-D Pd(5)O(4) surface oxide conversion back to metallic Pd(111). They presumably become rate-limiting in the complex separation process from an extended 3-D bulk oxide state toward a well ordered 3-D metallic phase.  相似文献   

6.
The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.  相似文献   

7.
《Chemical physics letters》1985,114(3):286-290
The reaction of carbon monoxide and oxygen over supported rhodium films has been studied using infrared spectroscopy. The focus of the work was the reactivity of the various CO/Rh/X (X = Al2O3, SiO2, TiO2) surface states for supported catalysts having high and low Rh loading. Under the reaction conditions the “linear CO” species was the most stable toward oxidation, but this could have been a result of an oxidized Rh surface. A new CO/Rh surface species has been proposed which exhibits an infrared band at 2000 cm−1 for a 0.5% Rh/TiO2 film. This species is believed to be a bridged carbonyl between Rh1+ and the TiO2 support.  相似文献   

8.
It is important to understand the chemisorption of oxygen and CO on Ru(0001) surface. CO oxidation at oxygen precovered Ru(0001) surface at low oxygen coverages gave an extremely low CO oxidation rate, and it was also observed that, with a nominal oxygen coverage exceeding ca. 3 mL, rather high CO/CO2 conversion probabilities were achieved1. In the case of coadsorption of CO and oxygen on Ru(0001) surface under UHV conditions, a model comprising two CO molecules in an (22)-O unit cel…  相似文献   

9.
The initial oxidation of the Rh(110) surface was studied by scanning tunneling microscopy, core level spectroscopy, and density functional theory. The experiments were carried out exposing the Rh(110) surface to molecular or atomic oxygen at temperatures in the 500-700 K range. In molecular oxygen ambient, the oxidation terminates at oxygen coverage close to a monolayer with the formation of alternating islands of the (10x2) one-dimensional surface oxide and (2x1)p2mg adsorption phases. The use of atomic oxygen facilitates further oxidation until a structure with a c(2x4) periodicity develops. The experimental and theoretical results reveal that the c(2x4) structure is a "surface oxide" very similar to the hexagonal O-Rh-O trilayer structures formed on the Rh(111) and Rh(100) substrates. Some of the experimentally found adsorption phases appear unstable in the phase diagram predicted by thermodynamics, which might reflect kinetic hindrance. The structural details, core level spectra, and stability of the surface oxides formed on the three basal planes are compared with those of the bulk RhO2 and Rh2O3.  相似文献   

10.
The dissolution of oxygen in polycrystalline palladium Pd(poly) at an O2 pressure of 100 Pa and temperatures of 500–950 K has been investigated by temperature-programmed desorption. At 500 K, the process yields a surface palladium film that includes an oxide-like reconstructed structure on a rarefied metal surface layer. At this temperature, palladium sorbs ~2 monolayers (ML) of oxygen. At 600–800 K, palladium dissolves up to ~140 ML of oxygen as a result of O2 chemisorption on the surface of the oxide film, penetration of Oads atoms under the oxide film, and their diffusion into the metal bulk. The dependence of the amount of oxygen sorbed by Pd(poly) (n) on the time of exposure to an O2 atmosphere is described by a nearparabolic function, n = atb, indicating that oxygen atoms diffuse in the metal lattice. The activation energy of this diffusion, Е dif, is ~83.5 kJ/mol. At high temperatures (800–950 K), palladium sorbs much less oxygen (≤10 ML). This is due to the complete decomposition of the surface oxide film, a process that markedly hampers the insertion of Oads atoms under the surface layer of the metal.  相似文献   

11.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

12.
The adsorption of water on V2O3(0001) surfaces has been investigated by thermal desorption spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy with use of synchrotron radiation. The V2O3(0001) surfaces have been generated in epitaxial thin film form on a Rh(111) substrate with three different surface terminations according to the particular preparation conditions. The stable surface in thermodynamic equilibrium with the bulk is formed by a vanadyl (VO) (1x1) surface layer, but an oxygen-rich (radical3xradical3)R30 degrees reconstruction can be prepared under a higher chemical potential of oxygen (microO), whereas a V-terminated surface consisting of a vanadium surface layer requires a low microO, which can be achieved experimentally by the deposition of V atoms onto the (1x1) VO surface. The latter two surfaces have been used to model, in a controlled way, oxygen and vanadium containing defect centres on V2O3. On the (1x1) V=O and (radical3xradical3)R30 degrees surfaces, which expose only oxygen surface sites, the experimental results indicate consistently that the molecular adsorption of water provides the predominant adsorption channel. In contrast, on the V-terminated (1/radical3x1/radical3)R30 degrees surface the dissociation of water and the formation of surface hydroxyl species at 100 K is readily observed. Besides the dissociative adsorption a molecular adsorption channel exists also on the V-terminated V2O3(0001) surface, so that the water monolayer consists of both OH and molecular H2O species. The V surface layer on V2O3 is very reactive and is reoxidised by adsorbed water at 250 K, yielding surface vanadyl species. The results of this study indicate that V surface centres are necessary for the dissociation of water on V2O3 surfaces.  相似文献   

13.
Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.  相似文献   

14.
Nearly monodisperse rhodium nanoparticles with adsorbed NH(x) were synthesized at the CCl(4)-water interface. The presence of NH(x)-adsorbed species was confirmed by energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) studies. The synthesis of controlled size 2-38 nm rhodium particles was studied as a function of reducing agent concentration by transmission electron microscopy (TEM). HRTEM confirmed the formation of rhodium nanoparticles having fringe spacing consistent with reported Rh (111) planes. The continuity of these films over an area of 1×1 μm was revealed by atomic force microscopy (AFM) studies. The electrocatalytic application of these nanostructure Rh-NH(x) thin films for formaldehyde oxidation in 0.5M NaOH was investigated by cyclic voltammetry. The Rh nanoparticles formed by the present strategy are expected to be useful for other catalytic applications also.  相似文献   

15.
Methanol adsorption and reaction have been studied on Rh-deposited cerium oxide thin films under UHV conditions using temperature-programmed desorption and synchrotron soft X-ray photoelectron spectroscopy. The methanol behavior was examined as a function of the Ce oxidation state, methanol exposure, and Rh particle size and coverage. When Rh nanoparticles were deposited on the ceria films, methanol decomposed on Rh to CO and H below 200 K. H atoms recombined and desorbed between 200 and 300 K. CO evolved from Rh deposited on fully oxidized ceria between 400 and 500 K. However, on reduced ceria films, the CO on Rh further decomposed to atomic C. Methanol adsorbed on the ceria films deprotonated to form methoxy as the only intermediate on the surface. This methoxy decomposed and desorbed as CO and H2 at higher temperatures regardless of the ceria oxidation state. Compared with the methanol reaction on Rh-free ceria thin films, formaldehyde formation from methoxy was completely suppressed after Rh deposition. Our results indicate that Rh can promote the decomposition of methoxy adsorbed on the ceria and that decomposition of methoxy intermediates occurred at the metal/oxide interfaces. On the other hand, the reduced ceria can promote total methanol decomposition on Rh.  相似文献   

16.
The reactivity of Cu monolayer (ML) and bilayer films grown on Ru(0001) towards O(2) and H(2) has been investigated. O(2) initial sticking coefficients were determined using the King and Wells method in the incident energy range 40-450 meV, and compared to the corresponding values measured on clean Ru(0001) and Cu(111) surfaces. A relative large O(2) sticking coefficient (~0.5-0.8) was measured for 1 ML Cu and even 2 ML Cu/Ru(0001). At low incident energies, this is one order of magnitude larger than the value observed on Cu(111). In contrast, the corresponding reactivity to H(2) was near zero on both Cu monolayer and bilayer films, for incident energies up to 175 meV. Water adsorption on 2 ML Cu/Ru(0001) was found to behave quite differently than on the Ru(0001) and Cu(111) surfaces. Our study shows that Cu/Ru(0001) is a highly selective system, which presents a quite different chemical reactivity towards different species in the same range of collision energies.  相似文献   

17.
In-situ FTIR spectroscopic and electrochemical data, and ex-situ (emersion) electron diffraction (LEED and RHEED) and Auger electron spectroscopic (AES) data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single crystal surfaces in perchloric acid solution. In both the absence and presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (eg. from -80 to +200 mV vs Ag/AgCl), a (2 x 2)-O phase is formed, which is unreactive toward CO oxidation, in agreement with UHV studies; increasing the potential results in the formation of (3 x 1) and (1 x 1) phases at 410 mV and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (COL) and threefold-hollow (COH) binding CO adsorbates (bands at 2000-2040 cm-1 and 1770-1800 cm-1, respectively) were observed on the Ru(0001) electrode. The in-situ FTIR data show that the adsorbed CO species still remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the COad and active Oad domains via the Langmuir-Hinshelwood mechanism. At low CO coverages,reversible relaxation, (at lower potentials), and compression, (at higher potentials), of the COL adlayer were observed and rationalised in terms of the reduction and formation of surface O-adlayers, The data obtained from the Ru(0001) electrode are in marked contrast to those observed at polycrystalline Ru, where only linear CO is observed.  相似文献   

18.
Adsorption of anions from sulfuric acid solutions has been studied on Ru(0001) single crystal and polycrystalline surfaces by electrochemical techniques and in-situ Fourier transform infrared spectroscopy. Infrared spectroscopy shows that bisulfate is the anion adsorbed on the Ru(0001) surface. The bisulfate adsorption is detected at the H2 evolution potential and extends into the potential region where the Ru surface is oxidized. A method for extracting unipolar bands from bipolar bands has been presented. The tuning rate of adsorbed bisulfate in the double layer potential region of Ru(0001) was found to be significantly smaller than those observed for other platinum metals. This has been ascribed to a small change in bisulfate coverage on Ru(0001) in this potential range. Bisulfate vibration frequencies are higher on this surface than at any face-centered cubic metal with the (111) orientation. Oxidation of the Ru(0001) surface is limited to one electron per Ru atom, distinctly different from the high degree of oxidation seen in polycrystalline surfaces. For oxidized polycrystalline Ru, only solution phase sulfates and bisulfates are observed in the IR spectra.  相似文献   

19.
Patterning of metallic clusters on surfaces is demonstrated by utilizing a buffer layer assisted laser patterning technique (BLALP). This method has been employed in order to measure the diffusion of AFM and STM characterized size selected gold nanoclusters (5-10 nm diameter), over Ru(100) and p(1 x 2)-O/Ru(100) surfaces. Optical linear diffraction from gold cluster coverage gratings was utilized for the macroscopic diffusion measurements. The clusters were found to diffuse on the surface intact without significant coalescence or sintering. The barrier for metastable gold nanocluster diffusion on the surface is thought to be lower than the energy required for surface wetting. The apparent activation energy for diffusion was found to depend on the cluster size, increasing from 6.2 +/- 0.4 kcal/mol for 5 nm clusters to 10.6 +/- 0.5 kcal/mol for 9 nm clusters. The macroscopic diffusion of gold nanoclusters has been studied on the p(1 x 2)-O/Ru(100) surface as well, where surface diffusion was found to be rather insensitive to the clusters size with activation energy of 5.5 +/- 1 kcal/mol. The difference between the two surfaces is discussed in terms of a better commensurability (higher level of friction) of the gold facets at the contact area with the clean Ru(100) than in the case of the oxidized surface.  相似文献   

20.
The initial growth of a water (D2O) layer on (1 x 1)-oxygen-covered Ru(0001) has been studied in comparison with that on bare Ru(0001) by means of temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Although water molecules adsorbed on both bare and (1 x 1)-oxygen-covered Ru(0001) commonly tend to form hydrogen bonds with each other when mobility occurs upon heating, the TPD and IRAS measurements for the two surfaces exhibit distinct differences. On (1 x 1)-oxygen-covered Ru(0001), most of the D2O molecules were desorbed with a peak at 160 K, even at submonolayer coverage, as condensed water desorption. The vibration spectra of adsorbed D2O also showed broad peaks such as a condensed water phase, from the beginning of low coverage. For submonolayer coverage, in addition, we found a characteristic O-D stretching mode at around 2650 cm(-1), which is never clearly observed for D2O on bare Ru(0001). Thus, we propose a distinctive water adsorption structure on (1 x 1)-oxygen-covered Ru(0001) and discuss its influence on water layer growth in comparison with the case of D2O on bare Ru(0001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号