首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The water adsorption on the bare and H-terminated Si(1 0 0) surfaces has been studied by the BML-IRRAS technique. It is found that H-terminated surfaces are much less reactive compared to the bare silicon surfaces. The (1 × 1)-H and (3 × 1)-H surfaces show similar and less reactivity pattern compared to the (2 × 1)-H surface. At higher exposures, the water reaction with coupled monohydride species provides an effective channel for oxygen insertion into the back bonds of dihydride species. It is not attributed to the H–Si–Si–H + H2O → H–S–Si–OH + H2, which could give rise to the characteristic Si–H and Si–OH modes, respectively at 2081 and 921 cm−1. A more suitable reaction mechanism involving a metastable species, H–Si–Si–H + H2O → H2Si  HO–Si–H (metastable) explains well the bending modes of oxygen inserted silicon dihydride species which are observed relatively strongly in the reaction of water with H-terminated Si(1 0 0) surfaces.  相似文献   

2.
High resolution X-ray photoelectron spectroscopy measurements have been performed onto ultrathin films of hexadecafluoro copper phthalocyanine deposited, at room temperature and in ultrahigh vacuum conditions, onto clean Si(1 1 1)7×7 substrate (silicon, Si). The measurements, performed at various film thicknesses, show a strong interaction between the molecule and the Si substrate. All the core level peaks present strong modifications induced by the substrate interaction. In particular the fluorine (F) spectrum clearly presents the effect of the interaction of some F atoms of the molecule with the substrate, which determines the formation of F–Si bonds while the copper spectrum indicates a charge transfer from the Si substrate. The changes observed in the other core level spectra have been attributed to a different charge distribution in the molecule, after the formation of F–Si bonds. We suggest a planar growth of these molecules on the Si substrate starting from the first layer.  相似文献   

3.
Hai Gou Huang 《Surface science》2007,601(5):1184-1192
The adsorption configurations of pyrimidine and triazine on Si(1 1 1)-7 × 7 were investigated using high-resolution electron energy loss spectroscopy (HREELS) X-ray photoelectron spectroscopy and density functional theory calculations. The HREELS spectra of chemisorbed monolayer show the coexistence of the C(sp2)-H and C (sp3)-H stretching modes together with the observation of the unconjugated CN(C) vibrational feature suggesting that the carbon atom and its para-nitrogen atom of pyrimidine and triazine directly participate in binding with the surface to form Si-C and Si-N σ-linkages. The core levels of the C-atom and its opposite nitrogen atom directly binding with Si-atoms experience a down-shifting by 1.8-1.9 and 1.4-1.6 eV, respectively. These experimental findings are consistent with the density functional theory calculations indicating that the carbon atom and its para-nitrogen atom favorably link with the adjacent adatom and rest atom pair to form C-Si and N-Si linkages.  相似文献   

4.
The reaction of formic acid on Si(1 1 1)-7 × 7 was investigated using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron energy loss spectroscopy (HREELS). The hydroxyl and carbonyl O 1s core levels of chemisorbed formic acid display chemical shifts of 2.4 and 0.2 eV respectively, compared with those of physisorbed molecules. The HREELS spectra of chemisorbed formic acid show the absence of stretching and bending modes of the O-H bond, the appearance of Si-H (2089 cm−1) and the Si-O (680 cm−1) stretching modes and the retained stretching mode of CO at 1703 cm−1. Our results clearly suggest that formic acid dissociates to form monodentate formate species and H-atom on the adatom-rest atom pair of Si(1 1 1)-7 × 7.  相似文献   

5.
Structural, energetics, and mechanistics aspects of initial steps of the reaction of a N atom with Si(1 0 0)-2×1 modeled by the Si9H12+N system are reported. Hybrid density functional B3LYP calculations predict a barrierless first step leading to an adsorbate where N is bound to one of the dimer Si. Two possible activated routes for internal rearrangements were found, with that leading to the incorporation of Si below the first layer predicted to be kinetically dominant (98%) under the experimental conditions. This structure and frequency calculations are consistent with the experimental finding of a planar NSi3 moeity and with the experimental SiN asymmetric stretching frequency of the NSi3 groups.  相似文献   

6.
The adsorption and reaction of 1,3-cyclohexadiene with the Ge(100)-(2×1) surface are investigated. The possibility of a surface Diels–Alder reaction ([4+2] cycloaddition), as well as a [2+2] cycloaddition reaction are explored. The surface reactions are followed by ultraviolet photoelectron and high-resolution electron energy loss spectroscopies. The vibrational spectroscopy results are compared with theoretically predicted frequencies for each of the possible surface reactions.  相似文献   

7.
Using density functional theory calculations we investigate the function of subsurface boron in determining surface properties of Si(0 0 1). To demonstrate its effect on surface reactivity we compare the behaviors of water adsorption on the clean and B-modified surfaces. We find that subsurface boron brings about a significant change in surface chemical properties by altering charge polarization of Si(0 0 1) locally. As a consequence, water adsorption on the B-modified surface shows a distinctively different feature from that on the clean surface.  相似文献   

8.
Theoretical (HF + DFT) investigations of the adsorption of chlorobenzene (ClPh), 1,2- and 1,4-dichlorobenzene (1,2-diClPh and 1,4-diClPh) on a silicon (1 0 0) surface are reported for the first time, and are compared with one another and with benzene. Binding energies for various structures with the molecules attached on-top and in-between the surface dimer rows are correlated with the STM experimental data. Novel structures with the molecules linking two dimer rows, stabilised by detachment of Cl (or H)-atoms forming Cl-Si (or H-Si) bonds, are described. For 1,4 and 1,2 binding, these linking structures are predicted to attach the phenyl ring parallel or perpendicular to the Si surface, respectively, while preserving its aromaticity. The potential-energy barriers between several different structures are evaluated, and compared with available experimental evidence. For 1,4-diClPh it is shown that the potential-energy barrier for the second Cl transfer is significantly lower than for the first one in contrast to the gas-phase, and comparable to the barrier for lifting the Bz-ring into a vertical position and forming a singly bonded ‘displaced’ structure. The predicted barrier-heights are consistent with the experimentally observed relative occurrence of the on-top, linking, and displaced structures.  相似文献   

9.
The effects of electron and X-ray beams on thiophene overlayers on TiO2(100) 1 × 1 and 1 × 3 surfaces have been investigated using AES, UPS and XPS. Mg K X-rays were found to polymerise a thiophene multilayer condensed at 120 K. The evidence points to a substrate-secondary-electron mediated process. A 3 keV electron beam also modifies a condensed thiophene overlayer, probably by polymerisation.  相似文献   

10.
In this work we show the adsorption of acetonitrile (CH3CN) and acrylonitrile (CH2CHCN) on Si(0 0 1)-2 × 1 at room temperature by increasing the molecular doses. Especially, by means of XPS and LEED data, we stress the action of these molecules on the silicon surface locating the dangling-bonds quasi-saturation within 10 L. The shortage of nitrogen XPS signal and some anomalies in carbon spectra point to an invading action from a traditional X-ray source (Al-Kα line) against chemisorbed molecules. In particular, we think that a long exposure to this radiation could break carbon-silicon bonds changing some adsorption geometries and making desorb molecular fragments.  相似文献   

11.
The adsorption of silane and methylsilane on the (1 1 0) and polycrystalline surfaces of gold is examined using vibrational electron energy loss spectroscopy (VEELS), angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) and X-ray photoelectron spectroscopy (XPS). Adsorption of silane onto the Au(1 1 0) surface at low temperatures is dissociative and yields an SiH2 and possibly also SiH3 surface species. Further dissociation occurs at room temperature to yield adsorbed SiH, which is tilted on the surface, with complete dissociation to Si occurring by 110 °C. The similarity in the UP spectra for silane adsorbed on the polycrystalline sample suggests that the same surface species are present over that temperature range. Above 200 °C, spectral changes suggest rearrangement of the Si atoms, which, by 350 °C, have diffused into the bulk. Adsorption of methylsilane onto the (1 1 0) surface at low temperatures initially produces adsorbed CH3SiH or CH3SiH2, with undissociated methylsilane physisorbing at higher exposures. By room temperature, desorption and decomposition leaves (or direct adsorption yields) only adsorbed CH3Si. After further heating, the hydrogen-carbon bonds of the CH3 group break to leave an adsorbed SiC species. On the polycrystalline surface, methylsilane adsorption is the same at low temperatures as on (1 1 0). In contrast to the latter, though, the UP spectra indicate that direct exposures at room temperature yield adsorbed Si or SiC initially, with CH3Si again adsorbing at higher exposures. Upon further heating to 330 °C, little if any methyl-groups remain on the surface and the Si has started to diffuse into the bulk.  相似文献   

12.
Peak assignment is a complex but important task for analyzing the vibration spectra of surface-bound molecules. Here we describe a simple approach for calculating infrared and Raman spectra for surface-bound molecules using a cluster model approach with quantum capping potentials (QCPs). The utility of the approach is demonstrated by comparisons to the measured high resolution electron energy loss spectra for ethylene on clean silicon. By capping the silicon cluster with QCPs we computed spectra that agree very well with the HREEL spectrum, allowing us to easily assign the experimental peaks. QCPs are similar to effective core potentials, can be used with any ab initio technique and most computational chemistry packages, and their use requires no special expertise.  相似文献   

13.
We compare the surface dynamics of the adsorbate systems Mo(1 1 0)–H and Mo(1 1 0)–Li. In both cases electron energy loss spectroscopy measurements revealed strong substrate surface phonon anomalies. Whereas the phonon anomaly of the hydrogen-covered surface was unequivocally assigned to be of the Kohn type, the anomalous behavior of the surface phonons of the lithium-covered surface remained obscure. In this paper we develop an experimental criterion based on the dispersion of adsorbate phonons, which allows to decide whether the observed substrate surface phonon anomaly is of the Kohn type or not. Employing this criterion we now definitely rule out that the anomaly on Mo(1 1 0)–Li is due to the Kohn effect.  相似文献   

14.
The role of kinetics in the superstructure formation of the Sb/Si(0 0 1) system is studied using in situ surface sensitive techniques such as low energy electron diffraction, Auger electron spectroscopy and electron energy loss spectroscopy. Sb adsorbs epitaxially at room-temperature on a double-domain (DD) 2 × 1 reconstructed Si(0 0 1) surface at a flux rate of 0.06 ML/min. During desorption, multilayer Sb agglomerates on a stable Sb monolayer (ML) in a DD (2 × 1) phase before desorbing. The stable monolayer desorbs in the 600–850 °C temperature range, yielding DD (2 × 1), (8 × 4), c(4 × 4), DD (2 × 1) phases before retrieving the clean Si(0 0 1)-DD (2 × 1) surface. The stable 0.6-ML (8 × 4) phase here is a precursor phase to the recently reported 0.25-ML c(4 × 4) surface phase, and is reported for the first time.  相似文献   

15.
The growth of thin subnanometric silicon films on TiO2 (1 1 0)-(1 × 2) reconstructed surfaces at room temperature (RT) has been studied in situ by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS), Auger electron and electron-energy-loss spectroscopies (AES and ELS), quantitative low energy electron diffraction (LEED-IV), and scanning tunneling microscopy (STM). For Si coverage up to one monolayer, a heterogeneous layer is formed. Its composition consists of a mixture of different suboxides SiOx (1 < x ? 2) on top of a further reduced TiO2 surface. Upon Si coverage, the characteristic (1 × 2) LEED pattern from the substrate is completely attenuated, indicating absence of long-range order. Annealing the SiOx overlayer results in the formation of suboxides with different stoichiometry. The LEED pattern recovers the characteristic TiO2 (1 1 0)-(1 × 2) diagram. LEED I-V curves from both, substrate and overlayer, indicate the formation of nanometric sized SiOx clusters.  相似文献   

16.
We present a comprehensive vibrational study of the clean and hydrogen- or deuterium-terminated silicon (0 0 1) surface. The modes related to the clean as well as to the H:Si, D:Si, and 2H:Si, 2D:Si surfaces are studied by means of high resolution electron energy loss spectroscopy (HREELS). We pay special attention to the modification of the phonon modes by the surface treatments and compare the data with reported experimental and theoretical results. The analysis of the relative phonon intensities of the clean, mono- and dihydride surfaces yields the assignment of the modes related to the dimer bonds. The isotopic shifts of vibrons related to the Si-H and Si-D bonds and to the surface phonon are discussed and applied to the characterisation of the surface excitations.  相似文献   

17.
Hai Hua Tang 《Surface science》2007,601(16):3293-3302
The interaction of ethyl vinyl ketone (EVK) with Si(1 1 1)-7 × 7 has been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The disappearance of both stretching vibrations of CH2 (3099 cm−1) and CO (1684 cm−1) coupled with the appearance of new CC stretching mode (1660 cm−1) in the HREELS spectra of chemisorbed EVK clearly demonstrates the direct involvement of conjugated CC and CO bonds to form a SiC1H2C2HC3(C4H2C5H3)OSi surface species via [4 + 2]-like cycloaddition in a highly selective manner. In addition, XPS studies show that the C1s binding energies of C1/C2 and C3 upon chemisorption display chemical downshifts of 0.8 eV and 2.2 eV, respectively, further confirming the proposed [4 + 2]-like cycloaddition reaction for the EVK/Si(1 1 1)-7 × 7 system. DFT theoretical calculations suggest that the proposed [4 + 2]-like cycloadduct is thermodynamically most favorable.  相似文献   

18.
Results of an STM study of dissociative GeH4 adsorption on Si(1 1 1)-(7 × 7) at 300 K show that GeH4 adsorbs under scission of two Ge-H bonds according to GeH4(g) + 4db → GeH2(ad) + 2H(ad). GeH2 binds to two adatom dangling bonds in a bridged configuration, while the two released hydrogen atoms saturate two additional dangling bonds. The GeH4 sticking coefficient under these conditions is 1.2 × 10−6, one order of magnitude smaller than for SiH4.  相似文献   

19.
From an interplay between scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, a comprehensive picture is obtained for oxygen adsorption on the Pt(110)-(1×2) surface, from single isolated oxygen atoms chemisorbed in FCC sites along the platinum ridges to the formation of a new high-coverage oxide-like structure with a local coverage of two oxygen atoms per platinum surface atom. We find that the repulsive O–O interactions for the O/Pt(110) system are compensated by an effective O–O attractive interaction originating from a strong coupling between oxygen adsorption and platinum lattice distortions.  相似文献   

20.
K. Seino 《Surface science》2005,585(3):191-196
The adsorption of 2,3-butanediol on the Si(0 0 1) surface is studied by means of first-principles pseudopotential calculations. Molecular adsorption on top of the Si dimers resulting in a 6-membered ring of the O-C-C-O segment with the dimer atoms is energetically favored, in agreement with the interpretation of recent experiments. The adsorption energy difference for butanediol adsorbed in either gauche or anti conformation is nearly one order of magnitude larger than the energy difference between the respective conformers in gas phase, pointing to a conformation-selective adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号