首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cyclophane-type of dimeric quinquethiophenes (4a-e) with the bridge chains consecutively varying from two to six methylenes has been synthesized and studied as ideal pi-dimer models. The double-decker structures of these compounds are verified by upfield shifts for the proton NMR signals of the inside thiophenes, as compared to those of monomeric dimethylquinquethiophene (3). The electronic absorption and emission spectra of 4a-e are perturbed by through-space pi-electronic interactions involving exciton-exciton coupling between the two overlapped quinquethiophenes, which become marked with shortening of the bridged alkylene chains. One-electron oxidation of 4a-e with FeCl(3) in dichloromethane results in the appearance of specific polaronic bands in the near-infrared region of the electronic absorption spectra, due to the generation of a radical cation species (polaron) on one of the quinquethiophenes, which electronically interacts with the remaining neutral species. Two-electron oxidation of 4a-e introduces spectral changes, revealing that the resulting two quinquethiophene radical cations readily form an intramolecular pi-dimer, thanks to their close stacking, in contrast to the difficult formation of an intermolecular pi-dimer from 3. The pi-dimeric spectra of 4b-e are comprised of two strong absorption bands, similar to that of 3, the low-energy band of which is considerably red-shifted by an effective pi-dimeric interaction depending on the lengths of the bridged alkylene chains. Quite different is the spectrum of 4a with three absorption bands inherent in pi-dimer, presumably because the two short bridging chains of 4a force the pi-dimer to take a constrained, strongly interactive structure.  相似文献   

2.
The unrestricted HF method in the INDO approximation with optimized geometry was used to describe the electronic structure of the hetero-ring of verdazyl and the derivatives of the latter. The results obtained are in good agreement with the experimental EPR spectra of triphenylverdazyl radical and its dipole moment. These data may be a basis for understanding and predicting the chemical properties and reactivity of verdazyl and its derivatives.  相似文献   

3.
The synthesis of a verdazyl radical with a carboxylate substituent renders the radical highly soluble in water, thereby permitting the aqueous synthesis of Ni(II) and Co(II) verdazyl complexes which have been structurally and magnetically characterized.  相似文献   

4.
Russian Chemical Bulletin - The main advances in the synthesis and studies of the properties of new stable heterocyclic verdazyl radicals and verdazyl radical coordination chemistry are reviewed....  相似文献   

5.
[structure: see text] The syntheses of several verdazyl radical and diradicals containing pyridine-based multitopic coordination sites are described. These compounds were designed to be paramagnetic analogues of oligopyridine metallosupramolecular building blocks.  相似文献   

6.
Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior. However, only a few of them are investigated in surface studies due to their poor thermal stability. The adsorption and conformational switching of two verdazyl radical molecules, namely, 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-2-yl)-6-oxoverdazyl (B2P) and 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy (STM) and density functional theory (DFT). The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2P in STM images are observed and assigned to be its "P" and "T" conformations. The "P" conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the "T" ones appear with a large protrusion and two small ones of different size. Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations. Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond. STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V. The "T" conformation of B2P can be switched to the "P" while the "P" conformation of B4P can be switched to the "T" one. For both molecules, such a conformational switching is irreversible. The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images. STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated. For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images. Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface. The tilt angles in "P" and "T" conformations are 0° and 50°, respectively. In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified. This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches.  相似文献   

7.
A complementary approach to published synthetic methods for tetrazinanones, precursors to verdazyl radicals, is described herein. This approach uses carbohydrazide, a commercially available reagent, as a common starting material. Unlike previous methods described in the literature, this synthetic scheme does not rely on phosgene, phosgene substitutes, or the limited pool of commercially available monosubstituted hydrazines for its execution. A large variety of alkyl substitution patterns at the N-1 and N-5 positions of verdazyl radicals are possible, including both symmetrically and unsymmetrically substituted products. An initial condensation reaction of carbohydrazide with a specific aldehyde introduces the desired C-3 substituent in the final verdazyl radical product and protects the NH(2) groups during the subsequent N-1 and N-5 alkylation reactions. A succeeding methanolysis and concomitant ring-closing reaction gives the tetrazinanone. A number of known oxidation methods can then be employed to form the final verdazyl radical product.  相似文献   

8.
Quenching of the triplet state of magnesium tetra-4-tert-butylphthalocyanine by verdazylium cations, and also quenching of the methoxy and nitro derivatives, have been investigated by pulse photolysis in propylene carbonate at room temperature. The quenching process is related to transfer of an electron from the excited pigment to the cation and the formation of an unusually stable, energy-intensive triplet radical pair that includes a stable cation radical of the phthalocyanine and a free verdazyl radical. The lifetime of the radical pair (10–3 sec) depends on the nature of the substituents in the verdazyl and is determined by the rate of triplet-singlet evolution of spins in the pair. The reaction mechanism is examined critically in this article, as well as the possible structure of the pair.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 28, No. 2, pp. 148–152, March–April, 1992.  相似文献   

9.
Benzaldehyde 2-methyl-5-tetrazolylhydrazone was synthesized and converted to a formazan, which undergoes methylation at the exocyclic nitrogen atom on reaction with dimethyl sulfate. The reaction product undergoes cyclization to the 1-(2-methyl-5-tetrazolyl)-3,5-diphenylleucoverdazyl radical when it is heated. Tautomerism due to location of the proton at the N(2) or N(4) atom of the tetrazine ring is characteristic for the verdazyl radical, according to the PMR spectral data. A verdazyl radical was obtained by oxidation of the leucoverdazyl radical.See [1] for communication XVIII.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 991–995, July, 1978.  相似文献   

10.
The first stable pi-dimer of a tetrathiafulvalene (TTF) cation radical encapsulated in the cavity of cucurbit[8]uril has been isolated at room temperature and fully characterized; it shows absorption bands at 400, 540 and 760 nm, characteristic of the TTF cation radical dimer.  相似文献   

11.
Redox flow batteries based on organic electrolytes are promising energy storage devices, but stable long-term cycling is often difficult to achieve. Bipolar organic charge-storage materials allow the construction of symmetrical flow batteries (i. e., with identical electrolyte composition on both sides), which is a strategy to mitigate crossover-induced degradation. One such class of bipolar compounds are verdazyl radicals, but little is known on their stability/reactivity either as the neutral radical, or in the charged states. Here, we study the chemical properties of a Kuhn-type verdazyl radical ( 1 ) and the oxidized/reduced form ( 1+/− ). Chemical synthesis of the three redox-states provides spectroscopic characterization data, which are used as reference for evaluating the composition of the electrolyte solutions of an H-cell battery during/after cycling. Our data suggest that, rather than the charged states, the decomposition of the parent verdazyl radical is responsible for capacity fade. Kinetic experiments and DFT calculations provide insight in the decomposition mechanism, which is shown to occur by bimolecular disproportionation to form two closed-shell products (leuco-verdazyl 1H and triazole derivative 2 ).  相似文献   

12.
We report the preparation, crystallization, and solid-state characterization of cycloheptyl and cyclooctyl-substituted spirobiphenalenyl radicals and the corresponding sigma-dimer of the cyclooctyl derivative. The crystal structure shows that the cycloheptyl radical (9) is monomeric in the solid state, with the molecules packed in an unusual one-dimensional (1-D) fashion that we refer to as a pi-chain structure, whereas the cyclooctyl variant exists both as pi-dimer 10 and sigma-dimer 10d. The neutral radical 9 shows the temperature-independent Pauli paramagnetism characteristic of a metal with a magnetic susceptibility, chip approximately 4.5x10(-4) emu/mol and is assigned a resonating valence bond (RVB) ground state. We highlight the relationship between the magnetic properties of the Heisenberg antiferromagnet and the RVB ground state in 1-D and further elucidate the electronic structure of this new class of compounds. Magnetic susceptibility measurements show that 10 is a diamagnetic pi-dimer, whereas 10d is a diamagnetic sigma-dimer. Extended Hückel calculations for 9 indicate that the solid is a one-dimensional organic metal with a bandwidth of about 0.4 eV. Pressed pellet conductivity measurements indicate values of sigmaRT=1.5x10(-3) S/cm for compound 9 and sigmaRT=1.0x10(-6) S/cm for compound 10. The structural results and transport properties are discussed in the light of extended Hückel theory band structure calculations and DFT investigations of the electronic structure of related compounds.  相似文献   

13.
Formazans react with boron triacetate to produce boratatetrazines, which can be reduced to yield borataverdazyl radical anions--the first boron containing verdazyl radicals.  相似文献   

14.
[structure: see text] A series of the title dimeric quinquethiophenes linked with a di- to hexamethylene spacer was synthesized and examined as a pi-dimer model of polythiophene. Upon two-electron oxidation with iron(III) chloride in dichloromethane, they readily form intramolecular pi-dimer species, except for the dimethylene-linked dimer that cannot be bent into a pi-stacked structure.  相似文献   

15.
An analysis of the symmetry of frontier molecular orbitals makes it possible to determine the molecular orbitals which take part in the redox conversions of stable radicals of various classes. In agreement with experimental data, it has been shown that the lowest barrier to reactions involving the electron disproportionation of stable phenoxyl, nitroxide, and verdazyl radicals is realized only when high-lying excited MO's participate. Conversely, the redox reaction between free verdazyl and phenoxyl radicals is allowed for the doublet ground states of the radicals, but the analogous reaction between verdazyl and nitroxide radicals requires the participation of excited molecular orbitals.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 1, pp. 86–91, January–February, 1987.  相似文献   

16.
New formazans, tetrazines, and verdazyl radicals containing perfluorophenyl substituents were obtained on the basis of perfluorophenylhydrazides. The stabilities of mono-, bis-, and tris(perfluorophenyl)verdazyl radicals and their leuco compounds are compared qualitatively. The stabilities of the free radicals obtained considerably exceed the stability of the diphenylpicrylhydrazyl (DPPH) radical.Chlorohydrazone IIa was previously obtained [3] by chlorination of hydrazide Ia with phosphorus pentachloride.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1130–1133, August, 1980.  相似文献   

17.
We report the development of an experimentally based structural analysis to examine the degree of localization of the spin and charge in the phenalenyl-based neutral radical molecular conductors--the results motivate a reinterpretation of the electronic structure of a number of the radicals that we have reported over the past 10 years. The analysis is based on the well-known relationship between bond order and bond length and makes use of the experimental bond distance deviations between the molecular structure of the radical and its corresponding cation. We determined the single crystal X-ray structure of the ethyl radical (1) at 11 temperatures between 90 K and room temperature so that we could follow the evolution of the structure and the electron density distribution through the magnetic phase transition that occurs in the vicinity of 140 K. We show that the enhanced conductivity in the dimeric ethyl (1) and butyl (3) radicals at the magnetic phase transition results from the development of a complex, but highly delocalized electronic structure and not to the formation of a diamagnetic pi-dimer. We find that the monomeric radicals 4, 12, and 13 have an asymmetric electron density distribution in the crystal lattice whereas radical 11 is the only monomeric radical which remains fully delocalized. The pi-chain radicals (7, 8, 14, and 15) retain the strongly delocalized electronic structures expected for a resonating valence bond ground-state structure.  相似文献   

18.
Two binuclear metal-radical complexes, formed by the reaction of M(hfac)(2) x 2H(2)O (M = Mn or Ni; hfac = hexafluoroacetylacetonate) with the 1,5-dimethyl-3-(4,6-dimethylpyrimidin-2-yl)-6-oxoverdazyl radical (3), were synthesized. The binuclear Mn complex 5 (i.e., 3[Mn(hfac)(2)](2)) crystallizes in the monoclinic space group C2/c: C(30)H(17)N(6)O(9)F(24)Mn(2), a = 29.947(3), b = 17.143(3), c = 16.276(3) A, beta = 123.748(3)*, Z = 4. The compound consists of two pseudo-octahedral Mn(II) ions, both bearing two hfac ancillary ligands, bridged by the bis(bidentate) radical 3. The temperature dependence of the magnetic susceptibility of 5 reveals moderate antiferromagnetic exchange between each of the Mn(II) ions and the verdazyl radical (J = -48 cm(-1)). The S = 9/2 ground spin state of the complex was corroborated by low-temperature magnetization versus field measurements. In contrast, the magnetic susceptibility versus temperature behavior of 6 (whose molecular structure is presumed to be analogous to that of 5) indicates that the two Ni(II) ions are strongly ferromagnetically coupled to the verdazyl radical (J = +220 cm(-1)). The magnetization versus field behavior of 5 is consistent with an S = 5/2 ground-state species.  相似文献   

19.
We report the preparation, crystallization, and solid-state characterization of ethyl (3)- and butyl (4)-substituted spiro-biphenalenyl radicals. Both of these compounds are found to be conducting face-to-face pi-dimers in the solid state but with different room-temperature magnetic ground states. At room temperature, 4 exists as a diamagnetic pi-dimer (interplanar separation of approximately 3.1 A), whereas 3 is a paramagnetic pi-dimer (interplanar separation of approximately 3.3 A), and both compounds show phase transitions between the paramagnetic and diamagnetic forms. Electrical resistivity measurements of single crystals of 3 and 4 show that the transition from the high-temperature paramagnetic pi-dimer form to the low-temperature diamagnetic pi-dimer structure is accompanied by an increase in conductivity by about 2 orders of magnitude. This behavior is unprecedented and is very difficult to reconcile with the usual understanding of a Peierls dimerization, which inevitably leads to an insulating ground state. We tentatively assign the enhancement in the conductivity to a decrease in the on-site Coulombic correlation energy (U), as the dimers form a super-molecule with twice the amount of conjugation.  相似文献   

20.
[reaction: see text] Spontaneous self-associations of various tricyclic phenalenyl radicals lead reversibly to either pi- or sigma-dimers, depending on alkyl-substitution patterns at the alpha- and beta-positions. Thus, the sterically encumbered all-beta-substituted tri-tert-butylphenalenyl radical (2*) affords only the long-bonded pi-dimer in dichloromethane solutions, under conditions in which the parent phenalenyl radical (1*) leads to only the sigma-dimer. Further encumbrances of 1* with a pair of alpha, beta- or beta, beta- tert-butyl substituents and additional methyl and ethyl groups (as in sterically hindered phenalenyl radicals 3* - 6*) do not inhibit sigma-dimerization. ESR spectroscopy is successfully employed to monitor the formation of both diamagnetic (2-electron) dimers; and UV-vis spectroscopy specifically identifies the pi-dimer by its intense near-IR band. The different temperature-dependent spectral (ESR and UV-vis) behaviors of these phenalenyl radicals allow the quantitative evaluation of the bond enthalpy of 12 +/- 2 kcal mol(-1) for sigma-dimers, in which the unusually low value has been theoretically accounted for by the large loss of phenalenyl (aromatic) pi-resonance energy attendant upon such bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号