首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many-body effects on tunneling of electrons in semiconductor nanowhiskers are investigated in a magnetic quantum limit. We consider the system with which bulk and edge states coexist. We show that interaction parameters of edge states are much smaller than those of bulk states and the tunneling conductance of edge states hardly depends on temperature and the singular behavior of tunneling conductance of bulk states can be observed.  相似文献   

2.
In this work, we study the effects of disorder on topological metals that support a pair of helical edge modes deeply embedded inside the gapless bulk states. Strikingly, we predict that a quantum spin Hall(QSH) phase can be obtained from such topological metals without opening a global band gap. To be specific, disorder can lead to a pair of robust helical edge states which is protected by an emergent Z_2 topological invariant, giving rise to a quantized conductance plateau in transport measurements. These results are instructive for solving puzzles in various transport experiments on QSH materials that are intrinsically metallic. This work also will inspire experimental realization of the QSH effect in disordered topological metals.  相似文献   

3.
One of the most fascinating challenges in Physics is the realization of an electron-based counterpart of quantum optics, which requires the capability to generate and control single electron wave packets. The edge states of quantum spin Hall (QSH) systems, i.e., two-dimensional (2D) topological insulators realized in HgTe/CdTe and InAs/GaSb quantum wells, may turn the tide in the field, as they do not require the magnetic field that limits the implementations based on quantum Hall effect. However, the band structure of these topological states, described by a massless Dirac fermion Hamiltonian, prevents electron photoexcitation via the customary vertical electric dipole transitions of conventional optoelectronics. So far, proposals to overcome this problem are based on magnetic dipole transitions induced via Zeeman coupling by circularly polarised radiation, and are limited by the g-factor. Alternatively, optical transitions can be induced from the edge states to the bulk states, which are not topologically protected though.Here we show that an electric pulse, localized in space and/or time and applied at a QSH edge, can photoexcite electron wavepackets by intra-branch electrical transitions, without invoking the bulk states or the Zeeman coupling. Such wavepackets are spin-polarised and propagate in opposite directions, with a density profile that is independent of the initial equilibrium temperature and that does not exhibit dispersion, as a result of the linearity of the spectrum and of the chiral anomaly characterising massless Dirac electrons. We also investigate the photoexcited energy distribution and show how, under appropriate circumstances, minimal excitations (Levitons) are generated. Furthermore, we show that the presence of a Rashba spin–orbit coupling can be exploited to tailor the shape of photoexcited wavepackets. Possible experimental realizations are also discussed.  相似文献   

4.
Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green''s function theory. The computed direct band gap of the perfect anatase bulk is 4.3 eV, far larger than the experimental optical absorption edge (3.2 eV). We found that this can be ascribed to the inherent defects in anatase which drag the conduction band (CB) edge down. The occupied band-gap states induced by these defects locate close to the CB edge, excluding the possible contribution of these bulk defects to the deep band-gap state below CB as observed in experiments.  相似文献   

5.
We demonstrate that bulk band structure can have a strong influence in scanning tunneling microscopy measurements by resolving electronic interference patterns associated with scattering phenomena of bulk states at a metal surface and reconstructing the bulk band topology. Our data reveal that bulk information can be detected because states at the edge of the surface-projected bulk band have a predominant role on the scattering patterns. With the aid of density functional calculations, we associate this effect with an intrinsic increase in the projected density of states of edge states. This enhancement is characteristic of the three-dimensional bulk band curvature, a phenomenon analog to a van Hove singularity.  相似文献   

6.
We consider the edge Hall conductance and show it is invariant under perturbations located in a strip along the edge (decaying perturbations far from the edge are also allowed). This enables us to prove for the edge conductances a general sum rule relating currents due to the presence of two different media located respectively on the left and on the right half plane. As a particular interesting case we put forward a general quantization formula for the difference of edge Hall conductances in semi-infinite samples with and without a confining wall. It implies in particular that the edge Hall conductance takes its ideal quantized value under a gap condition for the bulk Hamiltonian, or under some localization properties for a random bulk Hamiltonian (provided one first regularizes the conductance; we shall discuss this regularization issue). Our quantization formula also shows that deviations from the ideal value occurs if a semi-infinite distribution of impurity potentials is repulsive enough to produce current-carrying surface states on its boundary.UPR 7061 au CNRSUMR 8088 au CNRS  相似文献   

7.
Non-Hermitian systems can exhibit exotic topological and localization properties.Here we elucidate the non-Hermitian effects on disordered topological systems using a nonreciprocal disordered Su-Schrieffer-Heeger model.We show that the non-Hermiticity can enhance the topological phase against disorders by increasing bulk gaps.Moreover,we uncover a topological phase which emerges under both moderate non-Hermiticity and disorders,and is characterized by localized insulating bulk states with a disorder-averaged winding number and zero-energy edge modes.Such topological phases induced by the combination of non-Hermiticity and disorders are dubbed non-Hermitian topological Anderson insulators.We reveal that the system has unique non-monotonous localization behavior and the topological transition is accompanied by an Anderson transition.These properties are general in other non-Hermitian models.  相似文献   

8.
《Physics letters. A》2020,384(4):126094
A non-Hermitian topological insulator is fundamentally different from conventional topological insulators. The non-Hermitian skin effect arises in a nonreciprocal tight binding lattice with open edges. In this case, not only topological states but also bulk states are localized around the edges of the nonreciprocal system. We discuss that controllable switching from topological edge states into topological extended states in a chiral symmetric non-Hermitian system is possible. We show that the skin depth decreases with non-reciprocity for bulk states but increases with it for topological zero energy states.  相似文献   

9.
《中国物理 B》2021,30(6):66701-066701
Floquet theorem is widely used in the light-driven systems. But many 2 D-materials models under the radiation are investigated with the high-frequency approximation, which may not be suitable for the practical experiment. In this work,we employ the non-perturbative Floquet method to strictly investigate the photo-induced topological phase transitions and edge states properties of graphene nanoribbons under the light irradiation of different frequencies(including both low and high frequencies). By analyzing the Floquet energy bands of ribbon and bulk graphene, we find the cause of the phase transitions and its relation with edge states. Besides, we also find the size effect of the graphene nanoribbon on the band gap and edge states in the presence of the light.  相似文献   

10.
We investigate gallium and nitrogen vacancies in gallium nitride (GaN) bulk and nanowires using self-interaction corrected pseudopotentials (SIC). In particular, we examine the band structures to compare and contrast differences between the SIC results and standard density functional theory (DFT) results using a generalized gradient approximation (GGA) (Perdew et al 1996 Phys. Rev. Lett. 77 3865) functional. For pure nanowires, we observed similar trends in the bandgap behaviour, with the gap decreasing for increasing nanowire diameters (with larger bandgaps using SIC pseudopotentials). For gallium vacancies in bulk GaN and GaN nanowires, SIC results are similar to DFT-GGA results, albeit with larger bandgaps. Nitrogen vacancies in bulk GaN show similar defect-induced states near the conduction band, whilst a lower lying defect state is observed below the valence band for the DFT-GGA calculations and above the valence band for the SIC results. For nitrogen vacancies in GaN nanowires, similar defect states are observed near the conduction band, however, while the SIC calculations also show a defect state/s above the valence band, we were unable to locate this state for the DFT-GGA calculations (possibly because it is hybridized with edge states and buried below the valence band).  相似文献   

11.
Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.  相似文献   

12.
In this contribution, we study the behaviour of magnetically disordered electron systems. In a model with localized magnetic fields at the atomic sites, a CPA-like method, which has regard for the vector character of the fields, is used to examine the case where the localized fields, which correspond to atomic magnetic moments, are distributed statistically. In an example for a non-isotropic distribution of the fields, we construct a system state with partial homogeneous order of the localized fields (or moments). The ordering behaviour of the system and the comparison of the new magnetic state with pure magnetic and non-magnetic band states and with the non-magnetic state of (isotropic) stochastic distribution of the localized fields is discussed. With this paper we are able to introduce typical properties of localized models into a band model.Work supported in part by the Deutsche Forschungsgemeinschaft  相似文献   

13.
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.  相似文献   

14.
We consider a disordered two-dimensional system of independent lattice electrons in a perpendicular magnetic field with rigid confinement in one direction and generalized periodic boundary conditions (GPBC) in the other direction. The objects investigated numerically are the orbits in the plane spanned by the energy eigenvalues and the corresponding center of mass coordinate in the confined direction, parameterized by the phase characterizing the GPBC. The Kubo Hall conductivity is expressed in terms of the winding numbers of these orbits. For vanishing disorder the spectrum of the system consists of Harper bands with energy levels corresponding to the edge states within the band gaps. Disorder leads to broadening of the bands. For sufficiently large systems localized states occur in the band tails. We find that within the mobility gaps of bulk states the Diophantine equation determines the value of the Hall conductivity as known for systems with torus geometry (PBCs in both directions). Within the spectral bands of extended states the Hall conductivity fluctuates strongly. For sufficiently large systems the generic behavior of localization-delocalization transitions characteristic for the quantum Hall effect are recovered.  相似文献   

15.
A variety of transport phenomena observed at laterally confined two- dimensional electron systems (2DES) prove the occurrence of non-local contributions to the electronic conductance in these systems. However, this non-local regime accompanied by a non-equilibrium population of the edge states with respect to the 2D bulk state is quenched at rather low values of current-driving electric fields.We analyse the non-Ohmic behaviour of SdH oscillations at GaAs/GaAlAs Quantum Hall conductors on the basis of a model including edge and bulk conduction and deduce the non-equilibrium population of edge and bulk states quantitatively.The spatial separation between edge and bulk states was changed by tilting the samples with respect to the magnetic field. The resulting angular dependences of equilibration parameters could be quantitatively explained by the change of the ratio of spin splitting to cyclotron energy being present in 2DES in tilted magnetic fields.PACS index numbers: 73.20.Dx; 73.40.Hm  相似文献   

16.
In order to search for states specific to insulator/metal interfaces, we have studied epitaxially grown interfaces with element-selective near edge x-ray absorption fine structure. An extra peak is observed below the bulk edge onset for LiCl films on Cu and Ag substrates. The nature of chemical bonds as probed by x-ray photoemission spectroscopy and Auger electron spectroscopy remains unchanged, so we regard this as evidence for metal-induced gap states (MIGS) formed by the proximity to a metal, rather than local bonds at the interface. The dependence on the film thickness shows that the MIGS are as thin as one monolayer. An ab initio electronic structure calculation supports the existence of the MIGS that are strongly localized at the interface.  相似文献   

17.
王志宙  吴一东  杜会静  井西利 《中国物理 B》2016,25(7):77303-077303
In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies.Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems.  相似文献   

18.
陈锐  周斌 《中国物理 B》2016,25(6):67204-067204
For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.  相似文献   

19.
王青  盛利 《物理学报》2015,64(9):97302-097302
用数值方法研究了拓扑绝缘体薄膜体系在外加垂直磁场 作用下其边缘态的性质. 磁场的加入通过耦合k+eA, 即Peierls势替换关系和 该作用导致的Zeeman交换场体现在哈密顿量中. 考虑窄条圆环状结构的二维InAs/GaSb/AlSb薄膜量子阱材料, 当其处于拓扑非平庸状态, 即量子自旋霍尔态时, 会出现受时间反演对称性保护的两支简并边缘态, 而在垂直磁场的作用下, 时间反演对称性被破坏, 这时能带将形成一条条的朗道能级, 原来简并的两支边缘态也会分开到朗道能级谱线的两侧, 从电子态密度的空间分布情况则可以看到边缘态分别局域在材料的两个边界. 随着磁场的增大, 位于同一边界上的不同 自旋极化的边缘态将出现分离: 一支仍然局域在边缘, 另一支则随外加磁场的增加而有逐渐演化到材料内部的趋势. 文中还计算了同一边界上的两支边缘态之间的散射, 结果表明由于两个边缘态在空间发生分离, 相互之间的散射被很大的压制, 得到了其散射随磁场增加没有明显变化的结论, 所以磁场并不会增强散射过程, 也没有破坏体拓扑材料的性质, 说明了量子自旋霍尔态在没有时间反演对称的情况下也可以有较强的稳定性.  相似文献   

20.
We investigate band structure and transport property of lattice-matched graphene/hexagonal boron nitride (h-BN) heterostructure using the tight-binding approach. It shows that local potentials can significantly modify the band structure and the transport property. A method to individually manipulate the edge states by local potentials is proposed, including shifts and other deformations of edge bands. The two-terminal conductance of each layer is quantized but the interlayer conductance is non-quantized due to band mixing. In addition, we explore the Landau level spectrum in graphene/h-BN nanoribbons under both magnetic field and local potentials. The plateaus-like behavior of the interlayer conductance is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号