首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于单元几何变形操作提出一种高效的非结构网格质量修匀方法。其基本过程是先对每个单元独立地进行拉伸-收缩操作以优化单元的形状,然后在整个网格中通过对各单元的节点位置进行加权平均来获得改善后的网格。为进一步提高修匀方法对网格质量的优化效果,并使得该方法具备一定的网格调整能力,结合动网格技术提出了对单元进行大范围和较大幅度移动的策略;在修匀过程中还通过适当算法调整单元形心位置和单元尺寸,进一步增强了修匀方法对网格局部进行疏密调节的能力。本文方法可适用于平面和三维非结构网格的质量改善及网格调整。若干算例表明了方法的有效性。  相似文献   

2.
非结构网格变形方法研究进展   总被引:13,自引:0,他引:13  
动网格技术中的非结构网格变形是计算流体力学和计算固体力学的关键技术之一.本文在总结现有非结构网格变形方法的基础上, 提出了一种网格变形方法的详细分类, 将现有方法归类为虚拟结构法、偏微分方程法和代数法. 本文综述了各类方法的最新研究进展, 分析并比较了各类方法的特性, 评述了当前网格变形研究的几个主要方向:复杂结构外形在不规则变形下的动网格生成、三维动网格生成、并行动网格生成和动节点技术. 最后简要地探讨了该领域的发展趋势.   相似文献   

3.
非结构混合网格消除了结构网格节点的结构性限制,可以较好地处理边界,同时兼顾了粘性边界层模拟的需求,具有灵活性大、对复杂外形适应能力强和生成耗时短等优点,在飞行器气动特性模拟中得到广泛应用.本文针对非结构混合网格的特点,把前期针对非结构混合网格气动力高精度模拟发展改进的梯度计算方法和Roe格式熵修正方法推广应用到气动热流的数值模拟.以典型钝锥标模外形的高超声速绕流为研究对象,开展了不同网格形式和第一层网格不同间距的影响研究.结果 表明,热流计算时,头部物面网格最好采用四边形或四边形交叉剖分得到的三角形网格,物面法向的网格雷诺数取20左右,为热流计算时非结构混合网格的生成提供了指导,同时验证了计算方法的有效性和可靠性.  相似文献   

4.
This paper presents an investigation on the spring analogy. The spring analogy serves for deformation in a moving boundary problem. First, two different kinds of springs are discussed: the vertex springs and the segment springs. The vertex spring analogy is originally used for smoothing a mesh after mesh generation or refinement. The segment spring analogy is used for deformation of the mesh in a moving boundary problem. The difference between the two methods lies in the equilibrium length of the springs. By means of an analogy to molecular theory, the two theories are generalized into a single theory that covers both. The usual choice of the stiffness of the spring is clarified by the mathematical analysis of a representative one‐dimensional configuration. The analysis shows that node collision is prevented when the stiffness is chosen as the inverse of the segment length. The observed similarity between elliptic grid generation and the spring analogy is also investigated. This investigation shows that both methods update the grid point position by a weighted average of the surrounding points in an iterative manner. The weighting functions enforce regularity of the mesh. Based on these considerations, several improvements on the spring analogy are developed. The principle of Saint Venant is circumvented by a boundary correction. The prevention of inversion of triangular elements is improved by semi‐torsional springs. The numerical results show the superiority of the segment spring analogy over the vertex one for a small rotation of an NACA0012 mesh. The boundary correction allows for large deformation of the mesh, where the standard spring analogy fails. The final test is performed on a Navier–Stokes mesh. This mesh contains high aspect ratio mesh cells near the boundary. Large deformation of this mesh shows that the semi‐torsional spring improvement is imperative to retain the validity of this mesh. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we discuss numerical simulation techniques using a finite element approach in combination with the fictitious boundary method (FBM) for rigid particulate flow configurations in 3D. The flow is computed with a multigrid finite element solver (FEATFLOW), the solid particles are allowed to move freely through the computational mesh which can be static or adaptively aligned by a grid deformation method allowing structured as well as unstructured meshes. We explain the details of how we can use the FBM to simulate flows with complex geometries that are hard to describe analytically. Stationary and time‐dependent numerical examples, demonstrating the use of such geometries are provided. Our numerical results include well‐known benchmark configurations showing that the method can accurately and efficiently handle prototypical particulate flow situations in 3D with particles of different shape and size. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The representation of geometries as buildings, flood barriers or dikes in free surface flow models implies tedious and time‐consuming operations in order to define accurately the shape of these objects when using a body fitted numerical mesh. The immersed boundary method is an alternative way to define solid bodies inside the computational domain without the need of fitting the mesh boundaries to the shape of the object. In the direct forcing immersed boundary method, a solid body is represented by a grid of Lagrangian markers, which define its shape and which are independent from the fluid Eulerian mesh. This paper presents a new implementation of the immersed boundary method in an unstructured finite volume solver for the 2D shallow water equations. Moving least‐squares is used to transmit information between the grid of Lagrangian markers and the fluid Eulerian mesh. The performance of the proposed implementation is analysed in three test cases involving different flow conditions: the flow around a spur dike, a dam break flow with an isolated obstacle and the flow around an array of obstacles. A very good agreement between the classic body fitted approach and the immersed boundary method was found. The differences between the results obtained with both methods are less relevant than the errors because of the intrinsic shallow water assumptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We present in this paper an efficient and accurate volume of fluid (VOF) type scheme to compute moving interfaces on unstructured grids with arbitrary quadrilateral mesh elements in 2D and hexahedral elements in 3D. Being an extension of the multi‐dimensional tangent of hyperbola interface capturing (THINC) reconstruction proposed by the authors in Cartesian grid, an algebraic VOF scheme is devised for arbitrary quadrilateral and hexahedral elements. The interface is cell‐wisely approximated by a quadratic surface, which substantially improves the numerical accuracy. The same as the other THINC type schemes, the present method does not require the explicit geometric representation of the interface when computing numerical fluxes and thus is very computationally efficient and straightforward in implementation. The proposed scheme has been verified by benchmark tests, which reveal that this scheme is able to produce high‐quality numerical solutions of moving interfaces in unstructured grids and thus a practical method for interfacial multi‐phase flow simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
动网格生成技术及非定常计算方法进展综述   总被引:17,自引:1,他引:16  
对应用于飞行器非定常运动的数值计算方法(包括动态网格技术和相应的数值离散格式)进行了综述.根据网格拓扑结构的不同,重点论述了基于结构网格的非定常计算方法和基于非结构/混合网格的非定常计算方法,比较了各种方法的优缺点.在基于结构网格的非定常计算方法中,重点介绍了刚性运动网格技术、超限插值动态网格技术、重叠动网格技术、滑移动网格技术等动态结构网格生成方法,同时介绍了惯性系和非惯性系下的控制方程,讨论了非定常时间离散方法、动网格计算的几何守恒律等问题.在基于非结构/混合网格的非定常计算方法中,重点介绍了重叠非结构动网格技术、重构非结构动网格技术、变形非结构动网格技术以及变形/重构耦合动态混合网格技术等方法,以及相应的计算格式,包括非定常时间离散、几何守恒律计算方法、可压缩和不可压缩非定常流动的计算方法、各种加速收敛技术等.在介绍国内外进展的同时,介绍了作者在动态混合网格生成技术和相应的非定常方法方面的研究与应用工作.  相似文献   

9.
A high-order curvilinear hybrid mesh generation technique is developed for high-order numerical method (eg, discontinuous Galerkin method) applications to improve the accuracy for problems with curve boundary. The grid generation technique is based on an improved radius basic function (RBF) approach by which the straight-edge mesh is converted into high-order curve mesh. Firstly, an initial straight-edge mesh is prepared by traditional grid generation software. Then, high-order interpolation points are inserted into the mesh entities such as edges, faces, and cells according to the final demand of mesh order. To preserve the original geometry, the inserted points on solid wall are then projected onto the CAD model using an open source tool “Open Cascade.” Finally, other inserted points in the field near the solid wall are moved to appropriate positions by the improved RBF approach to avoid tangled cells. If we use the original RBF approach, then the inserted points on the edge and face entities normal to the solid boundary in the region of boundary layer will move to improper positions. To overcome this problem, a weighting based on the local grid aspect ratio between normal direction and tangential direction is introduced into the baseline RBF approach. Three typical configurations are tested to validate the mesh generator. Meanwhile, a third-order solution of subsonic flow over an analytical 3D body of revolution in the second International Workshop on High-Order CFD Methods is supplied by a discontinuous Galerkin solver. These numerical tests demonstrate the potential capability of present technique for high-order simulations of complex geometries.  相似文献   

10.
本文介绍了一种在四面体单元网格的加密过程中实现曲面逼近的算法.单元加密采用了最长边加密算法.曲面逼近实现了对二次曲面的逼近功能.当加密点所在边是边界面上的边时,将该点挪到对应的边界面上.挪动时根据该边所参与的两个边界三角形面的法向方向来确定加密点的挪动方向,再结合二次曲面方程来计算出挪动后点的新坐标.算例表明,对于由二次曲面边界围成的物体,这种算法能够有效地实现网格加密过程中的曲面边界逼近功能.  相似文献   

11.
This paper describes the development and application of a novel mesh generator for the flow analysis of turbomachinery blades. The proposed method uses a combination of structured and unstructured meshes, the former in the radial direction and the latter in the axial and tangential directions, in order to exploit the fact that blade‐like structures are not strongly three‐dimensional since the radial variation is usually small. The proposed semi‐structured mesh formulation was found to have a number of advantages over its structured counterparts. There is a significant improvement in the smoothness of the grid spacing and also in capturing particular aspects of the blade passage geometry. It was also found that the leading‐ and trailing‐edge regions could be discretized without generating superfluous points in the far field, and that further refinements of the mesh to capture wake and shock effects were relatively easy to implement. The capability of the method is demonstrated in the case of a transonic fan blade for which the steady state flow is predicted using both structured and semi‐structured meshes. A totally unstructured mesh is also generated for the same geometry to illustrate the disadvantages of using such an approach for turbomachinery blades. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
A hybrid building‐block Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian mesh based on a building‐block grid is used as a baseline mesh to cover the computational domain, while the boundary surfaces are represented using a set of gridless points. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for the complex geometries. The developed method is used to compute a number of test cases to validate the accuracy and efficiency of the method. The numerical results obtained indicate that the use of this hybrid method leads to a significant improvement in performance over its unstructured grid counterpart for the time‐accurate solution of the compressible Euler equations. An overall speed‐up factor from six to more than one order of magnitude and a saving in storage requirements up to one order of magnitude for all test cases in comparison with the unstructured grid method are demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
在有限元分析中,高质量的结构网格可以有效地提高有限元分析的精度,但结构网格的几何适应性差,针对复杂边界的二维计算模型,现有的方法很难自动生成高质量的结构网格;而非结构网格几何适应性很好,但存在计算效率低和精度差等问题。提出了一种新的准结构网格生成方法,能够实现复杂区域的网格自动生成并且具有高网格质量。该方法首先对计算区域运用Delaunay三角剖分技术生成粗背景网格;然后利用背景网格,使用优化的Voronoi图生成过渡的蜂巢网格;最后,通过中心圆方法对蜂巢网格单元进行结构网格剖分。分析NACA0012翼型数值模拟结果表明,提出的新准结构网格生成方法能够对边界复杂的模型自动生成高质量的网格,并且通过三种不同拓扑类型网格计算结果相互对比及与实验结果对比,证明准结构网格具有高计算精度。  相似文献   

14.
The solidification of an infinitely long square prism was analyzed numerically. A front fixing technique along with an algebraic grid generation scheme was used, where the finite difference form of the energy equation is solved for the temperature distribution in the solid phase and the solid–liquid interface energy balance is integrated for the new position of the moving solidification front. Results are given for the moving solidification boundary with a circular phase change interface. An algebraic grid generation scheme was developed for two-dimensional domains, which generates grid points separated by equal distances in the physical domain. The current scheme also allows the implementation of a finer grid structure at desired locations in the domain. The method is based on fitting a constant arc length mesh in the two computational directions in the physical domain. The resulting simultaneous, nonlinear algebraic equations for the grid locations are solved using the Newton-Raphson method for a system of equations. The approach is used in a two-dimensional solidification problem, in which the liquid phase is initially at the melting temperature, solved by using a front-fixing approach. The difference of the current study lies in the fact that front fixing is applied to problems, where the solid–liquid interface is curved such that the position of the interface, when expressed in terms of one of the coordinates is a double valued function. This requires a coordinate transformation in both coordinate directions to transform the complex physical solidification domain to a Cartesian, square computational domain. Due to the motion of the solid–liquid interface in time, the computational grid structure is regenerated at every time step.  相似文献   

15.
蔡政刚  潘君华  倪明玖 《力学学报》2022,54(7):1909-1920
浸没边界法是处理颗粒两相流中运动边界问题的一种常用数值模拟方法. 当研究的物理问题的无量纲参数满足一定要求时, 该流场结构呈现轴对称状态. 为此本文提出了一种基于2D笛卡尔网格和柱坐标系的轴对称浸没边界法. 该算法采用有限体积法(FVM)对动量方程进行空间离散, 并通过阶梯状锐利界面替代真实的固体浸没边界来封闭控制方程. 为了提高计算效率, 本文采用自适应网格加密技术提高浸没边界附近网格分辨率. 由于柱坐标系的使用, 使得动量方程中的黏性项产生多余的源项, 我们对其作隐式处理. 此外, 在对小球匀速近壁运动进行直接数值模拟时, 由于球壁间隙很小, 间隙内的压力变化比较剧烈. 因此想要精确地解析流场需要很高的网格分辨率. 此时, 需要在一个时间步内多次实施投影步来保证计算的稳定性. 而在小球自由碰壁运动中, 我们通过引入一个润滑力模型使得低网格分辨率下也能模拟小球近壁处的运动. 最后通过小球和圆盘绕流、Stokes流小球近壁运动以及小球自由下落碰壁弹跳算例验证本算法对于轴对称流的静边界和动边界问题均是适用和准确的.   相似文献   

16.
When particles are traced individually in a numerical simulation of particle-fluid flow, a point-locating scheme is necessary to relate the coordinates of a given point to the grid cell containing it. A new point-locating scheme combining the advantages of the existing ones is presented in this paper. The new method is first explained in detail. Then its performance under three-dimensional hybrid meshes is compared with the existing approaches in the literature. The results show that the proposed method is efficient, multifunctional and easy to implement in a structured/unstructured fluid flow solver.  相似文献   

17.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

18.
时刻追踪多介质界面运动的动网格方法   总被引:1,自引:0,他引:1  
在对可压缩多介质流动的数值模拟中,定义介质界面为一种内部边界,由网格的边组成,界面边两侧对应两种不同介质中的网格。通过求解Riemann问题追踪介质界面上网格节点的运动,同时采用局部重构的动网格技术处理介质界面的大变形问题,并将介质界面定义为网格变形边界,以防止该边界上网格体积为负。运用HLLC格式求解ALE方程组得到整个多介质流场的数值解。最后从几个多介质流模型的计算结果可以看出,本文的动网格方法是可行的,而且可以时刻追踪介质界面的运动状态。  相似文献   

19.
This paper presents a numerical method for simulating turbulent flows via coupling the Boltzmann BGK equation with Spalart–Allmaras one equation turbulence model. Both the Boltzmann BGK equation and the turbulence model equation are carried out using the finite volume method on unstructured meshes, which is different from previous works on structured grid. The application of the gas‐kinetic scheme is extended to the simulation of turbulent flows with arbitrary geometries. The adaptive mesh refinement technique is also adopted to reduce the computational cost and improve the efficiency of meshes. To organize the unstructured mesh data structure efficiently, a non‐manifold hybrid mesh data structure is extended for polygonal cells. Numerical experiments are performed on incompressible flow over a smooth flat plate and compressible turbulent flows around a NACA 0012 airfoil using unstructured hybrid meshes. These numerical results are found to be in good agreement with experimental data and/or other numerical solutions, demonstrating the applicability of the proposed method to simulate both subsonic and transonic turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
研究了具有非线性homologous变形约束条件的桁架结构形态分析问题。在已有的线性homologous变形约束桁架形态分析的基础上,将结构的节点分成三类:homologous变形约束节点,形状可变节点和边界点。运用Moore-Penrose广义逆矩阵性质,将基础方程组解的存在条件表示为包含形状可变节点未知坐标的非线性方程组,为采用Newton-Raphson方法求解非线性方程组,对AA (A为任意矩阵,A 为A的Moore-Penrose广义逆矩阵)求偏导数,找到了满足保型要求的形态,给出的桁架算例说明了本文方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号