首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
Ni—W alloy was electrodeposited from the electrolyte solution containing sodium tungstate, nickel sulfate and ammonium citrate. The electrodeposition, heat treatment, structure, surface morphology and corrosion resistance in w=0.03 NaCl solution, of Ni-W alloys were studied by means of DSC, XRD, SEM and electrochemical techniques. The results showed that the obtained Ni-W alloy electrodeposit with W weight content (Ww=0.471) was presented in more typical nanocrystaUine, After heat treatment at 400 ℃ for 1 h, the phase structure of the deposits was not obviously changed whereas the agglomerate for the reunion of tiny grains on deposit surface caused the granule in a more smooth morphology, the microhardness was slightly increased and the corrosion resistance was enhanced.  相似文献   

2.
To improve the anti-corrosion behaviors of magnesium alloy in the inner environment of human body,a bioactive Ca-P coating was deposited on the AZ60 magnesium alloy by a novel simple method.The morphologies of the Ca-P coatings formed under different treatment time were studied by scanning electron microscopy(SEM).The corrosion behaviors of Ca-P coating were investigated by electrochemical polarization test and electrochemical impedance spectroscopy in both 3%(mass fraction) NaCl solution and simulated body fluid(SBF).Immersion test in SBF was performed to evaluate the corrosion rate of Ca-P coated magnesium alloy.X-Ray diffraction(XRD) analysis result shows that the coating mentioned above mainly consists of dicalcium phosphate dehydrate(CaHPO4·2H2O,DCPD) and β-tricalcium phosphate dehydrate[β-TCP,Ca3(PO4)2],which exhibits good corrosion resistance.After magnesium alloy was immersed in 1 mol/L NaOH solution at 80 ℃ for 2 h,hydroxyapatite [Ca10(PO4)6(OH)2,HA]appeared on the magnesium alloy substrate,which can further decrease the corrosion rate of AZ60 magnesium alloy in SBF.  相似文献   

3.
Influences of stabilizer (KI) on the corrosion performance of the Ni-Fe-P-B deposit alloys,were investigated using electrochemical methods,weightless corrosion and heat treatment.The results show that corrosion current density (0.1585mA·cm~(-2)),porosity(0.5 No.cm~(-2)) and weightless corrosion rate of the deposit (Ni-Fe-P-B) in corrosion media are lowest,when the stabilizer (KI) concentration is 8mg.L~(-1).Corrosion resistance of the deposit drops to a different degree in the range of 200℃~600℃,and slowly falls down when CKI=8mg.L~(-1).The lattice changes and diffusion layer forming of the deposit play important roles in the changes of corrosion performance in the different range of heat treatment.However,the hardness and abradability of testing alloy increase to a different degree in 200~400℃.When CKI=8mg.L~(-1),hardness of alloy is as high as 950HV after heat treatment at 400℃×1h,which is twice that of the as-plated coating.  相似文献   

4.
Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) spectrometer were used to examine surface morphology and structure of the as-plated coating. Differential scanning calorimeter (DSC) and transmission electronic microscopy (TEM) were used to study the coating's phase change at high temperature. The coating's corrosive behavior in 3%NaCl + 5%H2SO4 solution was also investigated. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. In high-temperature condition, Ni3P precipitation and Ni crystallization took place in both coatings but at different temperatures, while the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anti-corrosion property was better in the CeO2-containing coating, and this was due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. Ni-P/CeO2 coating's pure amorphous structure was the result of Ni's hindered crystal-typed deposition and P's promoted deposition.  相似文献   

5.
The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO4/ZnSO4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase (poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCI or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.  相似文献   

6.
Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni, and Mg0.9Ti0.06Zr0.04Ni were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were studied. The X-ray diffraction (XRD) result shows that the main phases of the alloys exhibit amorphous structure. The scanning electron microscopy (SEM) photograph shows that the particle size of Ti and Zr substituted alloys was about 2-4 μm in diameter. The cycle lives of the alloys were prolonged by adding Ti and Zr. After 50 charge-discharge cycles, the discharge capacity of Mg0.9Ti0.06Zr0.04Ni was 91.74% higher than that of MgNi alloy and 37.96% higher than that of Mg0.9Ti0.1Ni alloy. The main reason for the electrode capacity decay is the formation of Mg(OH)2 (product of Mg corrosion) at the surface of alloy. The potentiodynamic polarization result indicates that Ti and Zr doping improves the anticorrosion in an alkaline solution. The electrochemical impedance spectroscopy (EIS) results suggest that proper amount of Ti and Zr doping improves the electrochemical catalytic activity significantly.  相似文献   

7.
刘海清 《高分子科学》2010,28(5):781-788
<正>The stability ofpoly(vinyl alcohol)(PVA) nanofibrous mats in water media was improved by post-electrospinning treatments.Bifunctional glutaraldehyde(GA) in methanol was used as a crosslinking agent to stabilize PVA nanofiber,but fiber twinning was observed frequently,and the highly porous structure of PVA nanofibrous mats was destroyed when the crosslinked fiber was soaked in water.To overcome this shortcoming,chitosan(CS) was introduced into the PVA spinning solution to prepare PVA/CS composite nanofibers.Their treatment in GA/methanol solution could retain the fiber morphology of PVA/CS nanofibers and porous structure of PVA/CS nanofibrous mats even if they were soaked in aqueous solutions for 1 month.Scanning electron microscopy(SEM),X-ray diffraction(XRD),thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC) were applied to characterize the physicochemical structure and thermal properties of PVA nanofibers.It was found that the water resistance of PVA nanofibrous mats was enhanced because of the improvement of the degree of crosslinking and crystallinity in the electrospun PVA fibers after soaking in GA/methanol solution.  相似文献   

8.
Compositionally modulated multilayered alloy (CMMA) coatings of Zn-Fe were developed from acid chloride baths by single bath technique. The production and properties of CMMA Zn-Fe coatings were tailored as a function of switching cathode current densities (SCCD’s) and thickness of individual layers. Corrosion rates (CR) were measured by electrochemical methods. Corrosion resistances were found to vary with SCCD’s and the number of sub layers in the deposit. SCCD’s were optimized for production of Zn-Fe CMMA electroplates showing peak performance against corrosion. The formation of discrete Zn-Fe alloy layers having different compositions in the deposits were demonstrated by scanning electron microscopy (SEM). Improvements in the corrosion resistance of multilayered alloys are due to the inherent barrier properties of CMMA coatings as evidenced by electrochemical impedance spectroscopy (EIS). Corrosion resistance afforded by Zn-Fe CMMA coatings are explained in terms of the n-type semiconductor films at the interface, supported by Mott-Schottky’s plot. It was observed that the alloy with high w(Fe) on the top showed better corrosion resistance compared to that with the less w(Fe) on top. At optimum SCCD’s of 3.0—5.5 A•dm-2, a Zn-Fe CMMA coatings with 600 sub layers showed ca. 45 times better corrosion resistance than conventional Zn-Fe alloy of the same thickness. The deposit showed no red rust even up to 1130 h in salt spray test.  相似文献   

9.
Herein,the relationship between the structure and base properties of Mg–Al hydrotalcite catalysts was comprehensively investigated in relation to heat treatment and rehydration processes,which are well known as memory effects of hydrotalcite.The structure of Mg–Al hydrotalcites changed from layered double hydroxide(LDH)to mixed metal oxide and subsequently to a spinel structure during heat treatment,and it was returned from mixed metal oxide to a LDH structure by rehydration.Based on various characterizations,we successfully proposed a detailed mechanism of memory effect.We also confirmed that the Mg–Al hydrotalcites had weak or strong base sites and that their base properties could be systematically tuned by heat treatment and rehydration.The prepared Mg–Al hydrotalcites were applied to a model reaction,isomerization of glucose to fructose,as base catalysts.Among the catalysts tested,the rehydrated Mg–Al hydrotalcite efficiently produced fructose due to its appropriate base and structure properties.We finally concluded that the base sites of Mg–Al hydrotalcites can be designed as desired by heat treatment and rehydration.Moreover,through systematic design of the base sites of Mg–Al hydrotalcites,these can be promising catalysts for various heterogeneous reactions over base catalysts,giving excellent catalytic performances.  相似文献   

10.
Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni and Mg0.9Ti0.1Ni0.9Co0.1 were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were also studied. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the main phases of the alloys exhibit amorphous structures, and trace of Ni co-exists. The charge-discharge cycle tests indicate these alloys have good electrochemical active characteristics. And the cycle stability of Ti and Co doped alloy was better than that of MgNi alloy. After 50 cycle charge-discharge, the discharge capacity of the Mg0.9Ti0.1Ni0.9Co0.1 alloy was much better than that of MgNi and Mg0.9Ti0.1Ni alloys. The discharge capacity of Mg0.9Ti0.1Ni0.9Co0.1 was 102.8% higher than that of MgNi alloy, and 45.49% higher than that of the Mg0.9Ti0.1Ni alloy. During the process of charge-discharge cycle test, the main reason for the electrode capacity fading is the corrosion of Mg to Mg(OH)2 on the surface of alloys. The Tafel polarization test indicates Ti and Co improve the anticorrosion in an alkaline solution. The EIS results suggest that proper amount of Ti and Co doping improve the electrochemical catalytical activity on the Mg-based alloy surface significantly.  相似文献   

11.
电沉积非晶态Ni-W-B/ZrO2复合镀层及其结构与性能   总被引:1,自引:0,他引:1  
在含有二氧化锆的Ni-W-B电解液中,电沉积获得Ni-W-B/ZrO2复合镀层.用差示扫描量热分析(DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学技术较系统地研究了Ni-W-B/ZrO2复合镀层的电沉积、热处理过程,以及镀层的结构、表面形貌、显微硬度和耐腐蚀性能.结果表明, 复合镀层的质量组成为Ni 47.5%、W 40.9%、B 0.9%和ZrO2 10.7%. DSC和XRD结果清楚说明, 二氧化锆对基质Ni-W-B镀层的结构有明显影响, 使得复合镀层的非晶态结构特征更加明显 .复合镀层比Ni-W-B合金有更高的显微硬度, 呈现团粒状结构, 晶块之间不存在裂纹但晶界清晰可辨; 二氧化锆粒子分散于Ni-W-B基质镀层中. 400 ℃、1 h热处理后, Ni-W-B基质镀层中W向镀层表面偏析, 镀层呈现固溶体晶态结构特征, 表面形貌特征基本不变, 复合镀层的显微硬度进一步提高, 抗腐蚀性能增强, 但镀层表层中的二氧化锆粒子大量脱落.  相似文献   

12.
非晶态Ni-W/ZrO2复合镀层的制备、热处理及腐蚀行为   总被引:2,自引:0,他引:2  
在镍钨合金电解液中, 通过搅拌使二氧化锆固体微粒悬浮, 电沉积制备Ni-W/ZrO2复合镀层. 研究结果表明, 二氧化锆粒子影响复合镀层的电沉积、表面形貌、结构、热处理过程和抗腐蚀性能; 与Ni-W合金的电沉积过程相比, 复合镀层中的W含量和电流效率均降低; 在400 ℃处理1 h后, 嵌入Ni-W本体中的ZrO2粒子脱落, W向镀层表面富集. 扫描电子显微镜(SEM)结果显示, 复合镀层呈现团粒状形态, 无裂纹. 差示扫描量热(DSC)分析结合X射线(XRD)衍射实验指出, Ni-W/ZrO2复合镀层为非晶态结构. 复合镀层的显微硬度较纳米晶Ni-W合金的高; 热处理后, 复合镀层的显微硬度和在3%氯化钠溶液中的抗腐蚀行为显著增强.  相似文献   

13.
退火前后镍钨硼合金电沉积层的结构与性能   总被引:6,自引:0,他引:6  
采用电化学技术、XPS、DSC、XRD等方法研究Ni W B合金电沉积及热处理前后合金镀层的结构和显微硬度.结果表明,在Ni W B合金电沉积过程中伴随着化学沉积镍等过程以及Na2B4O7在镀层中的夹杂;Ni W和Ni W B合金电沉积层分别表现为纳米晶结构和非晶态结构;热处理过程中合金电沉积层发生晶粒粗化过程以及Ni W B合金镀层发生新相形成过程,产生Ni4W和镍硼化物如Ni2B、Ni3B等沉淀物;400 ℃热处理2 h后Ni W合金镀层有最大的显微硬度达919.8 kg•mm-2,而在500 ℃下Ni W B合金有最大的硬度达1132.2 kg•mm-2.  相似文献   

14.
Composite Ni–P/nano‐TiO2 coatings were prepared by simultaneous electroless deposition of Ni–P and nano‐TiO2 on a low carbon steel substrate. The deposition was carried out from stirred solutions containing suspended nano‐TiO2 particles. The Ni–P and Ni–P/nano‐TiO2 coatings before and after heat treatment were characterized by X‐ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The micro‐structural morphologies of the coatings significantly varied with the nano‐TiO2 content. The corrosion resistance of as‐plated and heat‐treated Ni–P and Ni–P/nano‐TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5% NaCl solution. Ni–P/nano‐TiO2 coating exhibited superior corrosion resistance over Ni–P coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
稀土对电沉积Ni-P合金镀层耐蚀性的影响   总被引:16,自引:1,他引:15  
研究了稀土对电沉积Ni-P合金度层耐蚀性及组织的影响,通过浸泡实验和极化曲线的测定。得出在镀液中添加一定量的稀土元素能显著改善镀层的耐蚀性能。XRD,TEM,EDS结果表明,稀土元素具有促进Ni-P合金形成非晶组织的作用,由于稀土的加入,在远低于8%的P含量下,获得了以非晶态为主的组织。  相似文献   

17.
Electroless Ni–P and Ni–Cu–P coatings were passivated by chromate conversion treatment respectively. The anticorrosive performances of passivated coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The passivated Ni–Cu–P coating exhibited a high corrosion resistance with the icorr of 0.236 μA/cm,2 while the value of passivated Ni–P coating was only 1.030 μA/cm,2 indicating the passive film could improve the corrosion resistance of Ni–Cu–P coating to a significant extent. High‐resolution X‐ray photoelectron spectroscopy was used to determine the chemical states of elements detected in the passive film. Compared with passivated Ni–P coating, the passive film on Ni–Cu–P coating exhibited a higher ratio of Cr2O3 to Cr(OH)3 with the value of 72:28, which was the main factor for passivated Ni–Cu–P coating showing excellent corrosion resistance. The effect of Cu in electroless Ni–Cu–P coating on passivation process was discussed by the contrast experiment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A new environmentally friendly electroplating bath for Ni–Cu alloy deposition was developed. Lactic acid was used as a complexing agent. The influence of bath composition, current density, pH and temperature on cathodic polarization, cathodic current efficiency and alloy composition was studied. Different proportions of the two metals were obtained by using different deposition parameters, but at all [Ni2+] / [Cu2+] ratios studied, preferential deposition of Cu occurred and regular co‐deposition took place. The Ni content of the deposit increased with Ni2+ content and current density and decreased with temperature. The surface morphology of the deposited Ni–Cu alloy was investigated using scanning electron microscopy. The crystal structure was examined using the X‐ray diffraction technique. The results showed that the deposits consisted of a single solid solution phase with a face‐centered cubic structure. The crystallite size lies in the range of 12 to 25 nm for as‐plated alloys. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The electrochemical corrosion behavior of the non‐precious Ni‐Cr Wirolloy, being used in dentistry, was investigated before and after applying of two types of eco‐friendly coatings, polyvinyl silsesquioxane (PVS) and nano‐hydroxyapatite (nHAP) separately in artificial saliva solution at 37 °C for 14 d of immersion. The study aimed to investigate the effectiveness of the introduced coating films in enhancing the corrosion resistance of the alloy, and in decreasing the leaching of the toxic Ni ions from the alloy into the environment. The electrochemical corrosion investigation methods used are; open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The evaluated results revealed that the electrochemically coated alloy with PVS. prepared at cathodic potential showed higher corrosion resistance and more stable film compared to that prepared by conventional dip‐coating method. At the same time, the nHAP electrochemically coated film provided the best anti‐corrosion properties over all examined time intervals. The obtained results were confirmed via surface analysis, which assured the formation of the prepared coatings on the alloy surface. Chemical analysis of the corrosion product/solutions showed that the effect of electrochemically deposited nHAP and PVS. polymer films in suppression of Ni ions leaching is similar and slightly higher than that of the chemically coated PVS. one; however, all of them are efficient in decreasing the leaching of the risky Ni ions into the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号