首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational differences in molecules of 1,3-propanediol with variations of medium, temperature, and phase composition appear in their IR and Raman spectra. In the gas phase and in dilute solutions of 1,3-propanediol in CCl4 forms with intramolecular hydrogen bonding (IHB) and without it exist in comparable amounts. The difference in the weighted mean energies of the corresponding groups of conformers was found from the temperature dependence of the intensities of the bands for free OH and bounded OH. By calculating the conformational term of E* and by using the energy values of the 25 conformers of the diol molecules, calculated by molecular mechanics methods, the IHB energy was determined for two of them.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2277–2284, October, 1991.  相似文献   

2.
测定了1,2-乙二醇、1,2-丙二醇、1,4-丁二醇和1,6-己二醇在CCl4中分别与十几种非质子溶剂相互作用的红外光谱,通过考察频率位移的变化,定量地研究了二醇分子内氢键与分子间氢键的协同效应.在四氯化碳介质中,乙二醇、1,2-丙二醇和1,4-丁二醇体系中存在明显的氢键协同效应。利用红外光谱数据,估算了常温下二醇分子内缔体与非质子溶剂的交叉缔合常数,其数值大于一元正链醇与相应溶剂的交叉缔合常数.  相似文献   

3.
《Fluid Phase Equilibria》2005,238(1):106-111
The co-solubility in supercritical carbon dioxide of 1-butanol, 1-pentanol, 2-ethyl-1-hexanol, or 1-decanol in the presence of 2-ethylhexanoic acid in the pressure range of 100–180 bar and at 313 or 323 K was measured. The solubility of these alcohols in the presence of 2-ethylhexanoic acid is lower than in the systems alcohol + CO2 and remains nearly constant in the pressure range of 120–180 bar, with the exception of 1-decanol. The lower selectivities in the ternary systems are explained by strong intermolecular hydrogen bonding between alcohol molecules and 2-ethylhexanoic acid molecules. The FT-IR spectra of mixtures of alcohols and 2-ethylhexanoic acid at a 1:1 mole ratio in the liquid CCl4 confirmed this conclusion.  相似文献   

4.
The infrared and 1H and 13C NMR spectra of 3-aza-bicyclo[3.2.1]octane-8-β-ol have been examined in several media. To assist in interpretation of the spectroscopic data, the crystal structure has been determined by X-ray diffraction.The bicyclic system adopts a chair—envelope conformation with OH and phenethyl groups, respectively, in axial and equatorial positions with respect to the piperidine ring. The crystal structure is stabilized by means of OH…N intermolecular hydrogen bonding. In CCl4 solution the initial chair—envelope conformation changes to a boat—envelope conformation which is stabilized by an intramolecular hydrogen bond.The unambiguous assignment of all protons of the bicyclic system, not previously described, has also been carried out.  相似文献   

5.
Molecular recognition of carbohydrates plays an important role in nature. The aggregation of the smallest sugar, glycolaldehyde, was studied in a conformer‐selective manner using high‐resolution rotational spectroscopy. Two different dimer structures were observed. The most stable conformer reveals C2‐symmetry by forming two intermolecular hydrogen bonds, giving up the strong intramolecular hydrogen bonds of the monomers and thus showing high hydrogen bond selectivity. By analyzing the spectra of the 13C and 18O isotopologues of the dimer in natural abundance, we could precisely determine the heavy backbone structure of the dimer. Comparison to the monomer structure and the complex with water provides insight into intermolecular interactions. Despite hydrogen bonding being the dominant interaction, precise predictions from quantum‐chemical calculations highly rely on the consideration of dispersion.  相似文献   

6.
In this study, 200 ps molecular dynamics simulations were conducted to investigate the effects of various alcohols on the structural stability of melittin. The averaged helicity of melittin remained 80% in pure butanol, whereas it was below 60% both in pure water and in pure methanol. The α‐helix propensity of melittin increased with the aliphatic chain length of the alcohol. Charge‐charge interaction between Lys21 and Arg24 and polar‐nonpolar interaction between Trp19 and Arg22 are probably responsible for the higher structural integrity of the C‐terminal α‐helix over the N‐terminal one. The weaker dielectric constant of longer aliphatic chain length of alcohol possibly reduces the hydrogen bonding between amide protons and surrounding solvent molecules and simultaneously promotes the intramolecular hydrogen bonding in melittin and therefore stabilizes the secondary structure of melittin. The effect of various alcohols on stabilizing melittin is most likely due to their ability to form clusters on the surface of melittin effectively, favoring the formation of intramolecular hydrogen bonds instead of intermolecular hydrogen bonds and promoting the formation of stable α‐helices.  相似文献   

7.
In the present work, the electronic excited-state hydrogen bonding dynamics of coumarin chromophore in alcohols is revisited. The time-dependent density functional theory (TDDFT) method has been performed to investigate the intermolecular hydrogen bonding between Coumarin 151 (C151) and methanol (MeOH) solvent in the electronic excited state. Three types of intermolecular hydrogen bonds can be formed in the hydrogen-bonded C151–(MeOH)3 complex. We have demonstrated again that intermolecular hydrogen bonds between C151 and methanol molecules can be significantly strengthened upon photoexcitation to the electronically excited state of C151 chromophore. Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao et al. At the same time, the electronic excited-state hydrogen bond cleavage mechanism of photoexcited coumarin chromophores in alcohols proposed in some other studies about the hydrogen bonding dynamics is undoubtedly excluded. Hence, we believe that the two contrary dynamic mechanisms for intermolecular hydrogen bonding in electronically excited states of coumarin chromophores in alcohols are clarified here.  相似文献   

8.
IR spectroscopy methods (experiment, theoretical simulation) have been applied to study the structural features and intermolecular interactions in a two-component heterogeneous nano-size system benzophenone-titanium dioxide (BPh-TiO2). IR spectra of the sample were recorded at room temperature within the range 400–4000 cm?1. The spectra display hydrogen bonding determining the intermolecular interactions between titanium dioxide, BPh molecules, and water in the near-surface layers of nanocrystalline TiO2 particles. IR spectra of free BPh molecules, water, model H-complexes of BPh with water, and the fragment of hydrated titania surface (BPh…HOH and BPh…Ti≡) have been simulated. Experimental and theoretical spectra were analyzed in the region of stretching vibrations of carbonyl, hydroxyl, and other groups sensitive to a variation of intermolecular interactions. It is found that hydrogen bonding in the near-surface layers of nanocrystalline TiO2 particles in the two-component heterogeneous nanosystem BPh-TiO2 gives rise to the formation of complexes BPh-O-Ti(OH)-O-, BPh…HOH, along with complexes of-O-Ti(OH)-O-with water and pure water complexes.  相似文献   

9.
Vapor-phase OH-stretching overtone spectra of 1,3-propanediol and 1,4-butanediol were recorded and compared to the spectra of ethylene glycol to investigate the effect of increased intramolecular hydrogen bond strength on OH-stretching overtone transitions. The spectra were recorded with laser photoacoustic spectroscopy in the second and third OH-stretching overtone regions. The room-temperature spectra of each molecule are dominated by two conformers that show intramolecular hydrogen bonding. Anharmonic oscillator local-mode calculations of the OH-stretching transitions have been performed to aid assignment of the different conformers in the spectra and to illustrate the effect of the intramolecular hydrogen bonding. The hydrogen bond strength increases in the order ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The overtone transitions of the hydrogen-bonded hydroxyl groups are more difficult to observe with increasing intramolecular hydrogen bond strength. We suggest that the bandwidth of these transitions increases with increasing hydrogen bond strength and with increasing overtone and furthermore that these changes are in part responsible for the lack of observed overtone spectra for complexes.  相似文献   

10.
From an examination of the frequencies, integral intensities, and half-widths of the absorption bands of the stretching vibrations of the hydroxyl groups in the IR spectra, it was concluded that 3-hydroxyquinoline, 4-hydroxyisoquinoline, and their derivatives exist in the phenol form in dilute CCl4 solutions. Strong intermolecular hydrogen bonds, which are destroyed on dilution, exist in 3-hydroxyquinoline, 4-methyl-3-hydroxyquinoline, 4-hydroxyisoquinoline, and 1-chloro-3-methyl-4-hydroxyquinoline at concentrations above 102 M in CCl4. From an examination of the values of halo derivatives of 3-hydroxyquinoline and 4-hydroxyisoquinoline, it was concluded that an intramolecular hydrogen bond of the OH...Hal type is present in these compounds. The shift in the OH band increases in the order Cl< Br< I. Weak bands of a free OH group that pertain to the s-trans form are observed in the spectrum. Strong intramolecular hydrogen bonds exist in 3-nitro-4-hydroxyisoquinoline and 3-piperidinomethyl-4-hydroxyisoquinoline.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1535–1539, November, 1971  相似文献   

11.
The absorption spectra of the solvated electron in 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD) have been determined by nanosecond pulse radiolysis techniques. The maximum of the absorption band located at 570, 565, and 575 nm for these three solvents, respectively. With 4,4'-bipyridine (44Bpy) as a scavenger, the molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol-1 m2 for 12ED, 12PD, and 13PD, respectively. These values are two-thirds or three-fourths of the value usually reported in the literature. With these extinction coefficients, picosecond pulse radiolysis studies have allowed us to depict the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of water solution.  相似文献   

12.
Effects of solvent, pH and hydrogen bonding with N‐methylimidazole (MIm) on the photophysical properties of 1‐hydroxyfluorenone (1HOF) have been studied. Fluorescence lifetime, fluorescence quantum yield and triplet yield measurements demonstrated that intersystem crossing was the dominant process in apolar media and its rate constant significantly diminished with increasing solvent polarity. The acceleration of internal conversion in alcohols paralleled the strength of intermolecular hydrogen bonding. The faster energy dissipation from the singlet‐excited state in cyclohexane was attributed to intramolecular hydrogen bonding. The pKa of 1HOF decreased from 10.06 to 5.0 on light absorption, and H3O+ quenched the singletexcited molecules in a practically diffusion‐controlled reaction. On addition of MIm in toluene, dual fluorescence was observed, which was attributed to reversible formation of excited hydrogen‐bonded ion pair. Rate constants for the various deactivation pathways were derived from the combined analysis of the steady‐state and the time‐resolved fluorescence results.  相似文献   

13.
The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen‐bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time‐dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S1 state of this doubly hydrogen‐bonded FN‐2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen‐bonded FN‐2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm?1 observed in the IR spectra should be assigned as the doubly hydrogen‐bonded FN‐2MeOH complex from our calculated results. The electronic excited‐state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S1 state of the doubly hydrogen‐bonded FN‐2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen‐bonded FN‐MeOH complex and play important role on the photophysics of fluorenone in solutions. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

14.
The positions of the equilibria of N-alkyl-3-methoxycarbonyl-4-piperidinones in the liquid state, in water, in alcohols, and in CCl4 have been determined by IR and UV spectroscopy. It has been shown that Meyer's equation is not satisfied for them. This is due to the high steric requirements of the solvating electron pair of the nitrogen atom. On the basis of the fact that on passing from the methyl ester of cyclohexan-1-one-2-carboxylic acid to the N-alkyl-3-methoxycarbonyl-4-piperidones the position of the equilibrium in the liquid state and in CCl4 does not shift in the direction of the enol it is deduced that the spatial requirements of the free electron pair of the nitrogen atom do not appreciably exceed the steric requirements of the hydrogen atom. The IR and UV spectra of the chlorides of the N-alkyl-3-methoxycarbonyl-4-piperidinones in the solid state and in water and in alcohols are given.  相似文献   

15.
Terahertz time-domain spectroscopy (THz-TDS) is used to study the intra- and intermolecular vibrational modes of aromatic carboxylic acids, for example, o-phthalic acid, benzoic acid, and salicylic acid, which form either intra- or intermolecular hydrogen bond(s) in different ways. Incorporating the target molecules in nano-sized spaces in mesoporous silicate (SBA-16) is found to be effective for the separate detection of intramolecular hydrogen bonding modes and intermolecular modes. The results are supported by an analysis of the differences in the peak shifts, which depend on temperature, caused by the different nature of the THz absorption. Raman spectra revealed that incorporating the molecules in the nano-sized pores of SBA-16 slightly changes the molecular structures. In the future, THz-TDS using nanoporous materials will be used to analyze the intra- and intermolecular vibrational modes of molecules with larger hydrogen bonding networks such as proteins or DNA.  相似文献   

16.
The thermochemical properties of protonated hydrates of 1,2- and 1,3-propanediols have been investigated using electrospray ionization-high pressure mass spectrometry. The binding enthalpies, entropies, and free energies of the stepwise hydration of protonated propanediols with one to three waters are reported. The observed negative entropy change [ΔΔS1,3o for the addition of the third water to 1,3-propanediol·H+(H2O)2 suggests a stable structure due to an increased number of hydrogen bonds and the loss of the intramolecular hydrogen bond in the water cluster ion. The thermochemical properties of two isomers of butanediol were also investigated in order to further elucidate the structures of the protonated propanediols.  相似文献   

17.
Mo(CO)6 catalyzed oxidation of alcohols and diols with tetrachloromethane. Primary oxidation products in reaction of alcohols with CCl4 are alkyl hypochlorites, and final products depending on the structure of initial alcohol are aldehydes (as acetals), ketones, chloroketones, and esters.  相似文献   

18.
From electronic absorption and emission spectra in solutions it appears that intramolecular hydrogen bonding, strong enough to resist rupture by dioxane, exists in o-chloroaniline in the excited state only. Fluorescence quenching behaviour in the presence of dioxane indicates that intermolecular hydrogen bonding significantly increases intersystem crossing rate in m-chloroaniline only. This and other emission spectral characteristics in this hydrogen bonding solvent at 77 K show that the first excited singlet electronic state S1 of m-chloroaniline is ππ*, whereas the states S1 of aniline, toluidines and p-chloroanilines have some nπ* character. On formation of intermolecular hydrogen bond in dioxane, the corresponding triplet states of the molecules acquire pronounced nπ* character. An examination of phosphorescence decay curves reveals triplet complex formation in m- and p-chloroaniline but there is no evidence of triplet complex in the other aromatic amines studied.  相似文献   

19.
20.
A fluorimetri method is described for the determination of glycerol, 1,2-propanediol and triglycerides in serum by high-performance liquid chromatography with an on-line post-column reactor containing immobilized glycerol dehydrogenase. Before separation, triglycerides are cleaved with lipase and esterase. The polyhydric alcohols are separated from each other on a Finepak SIL C18 (10 μm) column with water as eluent. The NADHI produced from the enzymatic reaction is monitored by fluorimetry. Calibration curves are linear between 0.01 mM and 1.0 mM for glycerol or 2.0 mM for 1,2-propanediol. The method gave satisfactory results for control sera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号