首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract—Flavins, flavin nucleotides and selected flavoproteins have been compared in a reaction using blue light. in which plastocyanin is oxidized as the flavin is photoreduced. Per unit of light absorbed. flavin mononucleotide is more effective than flavin adenine dinucleotide, ribotlavin or lumiflavin. Of the flavoproteins tested, diaphorase from Clostridium kluyveri was most effective, but was less active than free flavin mononucleotide. The oxidation of plastocyanin requires aerobic conditions. and appears to be mediated by the production of singlet oxygen when the flavin is irradiated.  相似文献   

2.
Using 3-methyllumiflavin and tetraacetyliriboflavin as examples, we have shown that the socalled "fully oxidized" flavins can be "superoxidized" at an anodic potential of 1.8 to 1.9 V giving flavin radical cation transients which are rapidly transformed in subsequent chemical reactions. An attack by H2O subsequent to the superoxidation of 3-methyllumiflavin provides a route for the formation of 4a-hydroxy-3-methyllumiflavin radical cation, as evident from the subsequent decomposition to the protonated form of the starting flavin. When 3-methyllumiflavin is superoxidized in the presence of a base, a recycling process occurs, allowing superoxidized flavin to be trapped in a slower, competitive conversion. The relatively more stable trapped product is active in reacting with H2O2 to emit chemiluminescence. Electrochemical oxidation of H2O2 in acetonitrile at 1.30 V in the presence of an oxidized flavin results in a direct protonation of the flavin by H+ generated from the electrolysis of H2O2. Minor reactions presumably provide alternative formations of the 4a-hydroperoxy- and 4a-hydroxy-flavin radical cation transients by the direct addition of HOO. and HO. radicals, which also arise in the oxidation of H2O2, to protonated flavin. Under such conditions the superoxidized flavin radical cation is apparently also formed, either directly or by process(es) such as decomposition of the flavin 4a-adduct radical cations. Subsequent reductions of either the superoxidized flavin or the flavin 4a-adduct radical cations lead to an almost steady level of luminescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract— Addition of tyrosine or derivatives to aqueous solutions of flavins does not significantly impede either formation of the flavin triplet or the rate of O2 oxidation of the flavin radical generated by reaction of triplet with the phenol. However, the rate of radical decay is decreased. There is only a modest effect that results from altering the nature of the group on alkyl side chains of the flavin when the substituent, e.g. phenylalanine, does not complex avidly with the isoalloxazine system. However, when a tyrosyl or O-methyltyrosyl residue is covalently attached to an alkyl side chain at the N10-position of the flavin, the considerable intramolecular complexing that results markedly decreases the formation of flavin triplet and, therefore, the radical yield. The rate of triplet decay is not much different than for noninternally complexed flavins, but extensive intramolecular radical decay occurs, and the rate of 02 oxidation of radical is decreased. A shorter alkyl chain is more effective than a longer one for decreasing triplet production, but the greater proximity of a photooxidiz-able tyrosyl residue to the flavin nucleus within the former allows a slightly higher intramolecular radical yield. Attachment of a tyrosyl residue by a short chain from the N3-position of the flavin has only a modest effect on the production of flavin triplet and its decay. There is less radical production from internal than from external tyrosyl residues, and the rate of O2 oxidation of the flavin radical generated by such intermolecular photoreductants as N-acetyl tyrosine ethyl ester or EDTA is somewhat decreased. The tyrosyl residue within the active-site peptide of mitochondrial monoamine oxidase is not so susceptible to photooxidation by the 8α-(S-L-cysteinyl)flavin involved, since the thioether linkage at this position severely reduces triplet production. Upon oxidation of the thioether to sulfone, however, the triplet yield is partially restored. Some flavin radical can then be generated from either the intra- or an intermolecular tyrosyl residue. Taken together, these results demonstrate that tyrosyl residues near the flavin-binding sites of flavo-proteins can become oxidized by the flavin triplet that is light-generated unless the proximity and steric disposition of the interactants is such as to allow dissipation of much of the energy as radiationless decay within a tight complex or unless an 8α-thioether linkage to the flavin coenzyme is involved. Also, flavin radicals, whether generated photochemically or by biochemical oxidation of substrate, are readily oxidized by O2 in the presence of tyrosyl functions unless tight complexing occurs. More remarkable, though, is the decreased rate of radical decay conferred by the association with a tyrosyl residue. This stabilization of reactive flavin radicals may have considerable consequence in the catalytic mechanism of such enzymes.  相似文献   

4.
Illumination of flavin in the presence of N-allythiourea (ATU) inhibits catalytic turnover of flavin between its reduced and oxidized redox states by adduct formation, the adduct being no longer reoxidisable by oxygen. The first step in the mechanism of adduct formation is an electron transfer from ATU to flavin in the photoexcited triplet state. In further steps, the ATU radical cation deprotonates, electronic rearrangement occurs and radical combination with the flavosemiquinone follows, yielding a cyclic product in which ATU is added in the 4a- and 5-position to the flavin chromophore.
Reaction rates and yields were determined by flash photolysis and continuous illumination. A photochemical study by variation of the molecular structure of ATU was undertaken to prove the proposed mechanism and to determine the structural requirements of flavin inactivators.  相似文献   

5.
Abstract— Primary and secondary photochemical processes in oxygen-free aqueous solution have been characterised for FMN alone and in the presence of EDTA and four amino acids using nanosecond and microsecond flash photolysis and continuous photolysis techniques. The relative contributions of oneelectron and two-electron (group or hydride transfer) reactions to the deactivation of the triplet has been determined by comparing the radical concentration (560 nm) with the bleaching of the ground state (446 nm). It was concluded that one-electron reactions (hydrogen atom or electron abstraction) are the major mode of reactivity of the flavin triplet state with all the suhstrates studied.
The nature of the reactions of the flavin semiquinone radical have been studied quantitatively by microsecond flash photolysis. These secondary reactions consist of either a 'back reaction' between the flavin and substrate radicals (tryptophan or glycyl-tyrosine) or the transfer of a second electron (or hydrogen atom) from the substrate radical to the flavin radical (EDTA, methionine and possibly cysteine) to form reduced flavin and oxidised substrate. From a comparison of the quantum yields of formation of reduced flavin using 'flash' and continuous irradiation, an additional pathway for the decay of the flavin radical is suggested to occur at low light intensities in the presence of glycyl-tyrosine or histidine.  相似文献   

6.
MINDO /3 calculations have been performed on the Clostridium MP flavodoxin active site (a complex of the redox active coenzyme flavin mononucleotide sandwiched between the side chains of methionine and tryptophan) at various redox levels using coordinates derived from x-ray diffraction studies of the holoenzyme. Frontier orbital indices were calculated and indicate that reduction of the flavin is accompanied by induced polar states in the amino acid side chains. This stabilization of charge by the amino acid side chains could account for the reaction rate enhancement of flavin reduction catalyzed by flavodoxin. Frontier orbitals for free flavin, for the flavodoxin bound flavin without the amino acid side chains, and for the oxidized Desulfovibrio vulgaris flavodoxin active site were computed for comparison.  相似文献   

7.
The unconventional bioorthogonal catalytic activation of anticancer metal complexes by flavin and flavoproteins photocatalysis has been reported recently. The reactivity is based on a two-electron redox reaction of the photoactivated flavin. Furthermore, when it comes to flavoproteins, we recently reported that site mutagenesis can modulate and improve this catalytic activity in the mini Singlet Oxygen Generator protein (SOG). In this paper, we analyze the reductive half-reaction in different miniSOG environments by means of density functional theory. We report that the redox properties of flavin and the resulting reactivity of miniSOG is modulated by specific mutations, which is in line with the experimental results in the literature. This modulation can be attributed to the fundamental physicochemical properties of the system, specifically (i) the competition of single and double reduction of the flavin and (ii) the probability of electron transfer from the protein to the flavin. These factors are ultimately linked to the stability of flavin‘s electron-accepting orbitals in different coordination modes.  相似文献   

8.
BLUE AND ULTRAVIOLET-B LIGHT PHOTORECEPTORS IN PARSLEY CELLS   总被引:3,自引:0,他引:3  
Abstract— Ultraviolet-B (UV-B) and blue light photoreceptors have been shown to regulate chalcone synthase and flavonoid synthesis in parsley cell cultures. These photoreceptors have not yet been identified. In the present work, we studied UV-B photoreception with physiological experiments involving temperature shifts and examined the possible role of flavin in blue and UV-B light photoreception. Cells irradiated with UV-B light (0.5–15 min) at 2°C have the same fluence requirement for chalcone synthase and flavonoid induction as controls irradiated at 25°C. This is indicative of a purely photochemical reaction. Cells fed with riboflavin and irradiated with 6 h of UV-containing white light synthesize higher levels of chalcone synthase and flavonoid than unfed controls. This effect did not occur with blue light. These results indicate that flavin-sensitization requires excitation of flavin and the UV-B light photoreceptor. The in vivo kinetics of flavin uptake and bleaching indicate that the added flavin may act at the surface of the plasma membrane. In view of the likely role of membrane-associated flavin in photoreception, we measured in vitro flavin binding to microsomal membranes. At least one microsomal flavin binding site was solubilized by resuspension of a microsomal pellet in buffer with high KPi and NaCl concentrations and centrifugation at 38000 g. The 38000 g insoluble fraction had much greater flavin binding and contained a receptor with an apparent KD of about 3.6 μM and an estimated in vivo concentration of at least 6.7 × 10–8M. Flavin mononucleotide, roseoflavin, and flavin adenine dinucleotide can compete with riboflavin for this binding site(s), although each has lower affinity than riboflavin. Most microsomal protein was solubilized by resuspension of the microsomal pellet in non-denaturing detergents and centrifugation at 38 000 g ; however, this inhibited flavin binding, presumably because of disruption of the environment of the flavin receptor. The parsley microsomal flavin binding receptor(s) have a possible role in physiological photoreception.  相似文献   

9.
A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.  相似文献   

10.
《Chemistry & biology》1998,5(7):355-364
Background: The homodimeric nitric oxide synthase (NOS) catalyzes conversion of l-arginine to l-citrulline and nitric oxide. Each subunit contains two flavins and one protoporphyrin IX heme. A key component of the reaction is the transfer of electrons from the flavins to the heme. The NOS gene encodes two domains linked by a short helix containing a calmodulin-recognition sequence. The reductase domain binds the flavin cofactors, while the oxygenase domain binds heme and l-arginine and additionally mediates the dimerization of the NOS subunits. We investigated the origin of the unusual magnetic properties (rapid-spin relaxation) of an air-stable free radical localized to a reductase domain flavin cofactor.Results: We characterized the air-stable flavin in wild-type NOS, both in the presence and absence of calcium and calmodulin, the imidazole-bound heme complex of wild-type NOS, the NOS Cys415→Ala mutant, and the isolated reductase domain. All preparations of NOS had the same flavin electron-spin relaxation behavior. No half-field transitions or temperature-dependent changes in the linewidth of the radical spin signal were detected.Conclusions: These data suggest that the observed relaxation enhancement of the NOS flavin radical is caused by the environment provided by the reductase domain. No magnetic interaction between the heme and flavin cofactors was detected, suggesting that the flavin and heme centers are probably separated by more than 15 A.  相似文献   

11.
Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ~6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations >100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.  相似文献   

12.
Abstract— The dynamics of the flavin bound to the flavocytochrome b2 from Hansenula anomala were studied by fluorescence intensity quenching and quenching emission anisotropy with iodide. The fluorescence intensity of bound flavin is decreased 13-fold as compared to the free molecule. The remaining fluorescence decays with two lifetimes equal to 0.963 ± 0.040 and 4.635 ± 0.008 ns and fractional intensities of 0.036 ± 0.002 and 0.964 ± 0.002, respectively. The bimolecular diffusion constant was found to be 3.33 × 109 M -1 s-1 when the flavin is bound to the enzyme and 8.3 × 109 Mv s-1 when the flavin is free in solution. Thus, the flavin in flavocytochrome b2 is accessible to the solvent, but the amino acid residues of the binding site inhibit the diffusion of iodide. The rotational correlation time of bound flavin was found to be 2.015 ± 0.365 ns, a value higher than that (155 ps) of free flavin in solution. Our results are discussed on the basis of local dynamics of the flavin.  相似文献   

13.
The pH dependent behavior of two flavin cofactors, flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN), has been characterized using femtosecond transient absorption spectroscopy for the first time. The flavin excited state was characterized in three states of protonation (Fl(-), Fl, and FlH(+)). We found that Fl and Fl(-) exhibit the same excited state absorption but that the lifetime of Fl(-) is much shorter than that of Fl. The transient absorption spectrum of FlH(+) is significantly different from Fl and Fl(-), suggesting that the electronic properties of the flavin chromophore become appreciably modified by protonation. We further studied the excited state protonation of the flavin and found that the protonation sites of the flavin in the ground and excited state are not equivalent. In the case of FAD, its excited state dynamics are controlled by the two conformations it adopts. At low and high pH, FAD adopts an "open" conformation and behaves the same as FMN. In a neutral pH range, FAD undergoes a fast excited state deactivation due to the "stacked" conformer. The transition from stacked to open conformer occurs at pH ~ 3 (because of adenine protonation) and pH ~ 10 (because of flavin deprotonation).  相似文献   

14.
Abstract— A blue light photoreceptor has not been identified in higher plants. Most proposals for a blue light-absorbing chromophore lack evidence for a direct connection between the putative chromophdre and a biological effect. Fluorescence data for the plasma membrane from etiolated buds of Pisum sativum L. suggest that we are measuring fluorescence emission of flavin species, and probably not pterin species. Fluorescence data indicate that a putative flavin exists associated with a protein or protein complex in the plasma membrane. Excitation of plasma membranes that were boiled in the presence of 0.1% sodium dodecyl sulfate and treated with blue light yields a fluorescence band with a maximum of approximately 552 nm. This fluorescence emission can be rapidly quenched by the flavin antagonists phenylacetic acid (PAA) and KI. Blue light-enhanced binding of guanosine 5'-[Γ-thio]triphosphate (GTPγS) to a protein in the plasma membrane is strongly inhibited by PAA, KI, and NaN3, all quenchers of flavin excited states, indicating that a chromophore for this photoreaction may be a flavin associated with a plasma membrane protein. The above evidence is consistent with the participation of a flavin as the chromophore for the light-induced GTP-binding reaction in pea plasma membrane.  相似文献   

15.
MINDO /3 calculations have been performed on semiquinone and fully reduced lumiflavins and on hydroperoxy adducts of lumiflavin. Frontier orbital indices were calculated. Reduction of the flavin was studied in bent and planar flavin rings. The results suggest that the planar reduced flavin has a smaller ionization potential than the bent reduced flavin. This could account for the low redox potential of protein-bound reduced flavins.  相似文献   

16.
The synthesis of thymine for DNA is catalyzed by the enzyme thymidylate synthase (TS). A family of flavin-dependent TSs encoded by the thyX gene has been discovered recently. These newly discovered TSs require a reducing substrate in addition to 2'-deoxyuridine monophosphate (dUMP) and 5,10-methylenetetrahydrofolate (CH2THF), suggesting that the enzyme-bound flavin is a redox intermediary in catalysis. The oxidation of the reduced flavin of the TS from Campylobacter jejuni has been observed directly upon mixing with dUMP and CH2THF under anaerobic conditions, thus providing the first direct demonstration of its redox role in catalysis. Product analysis showed that the one mole of 2'-deoxythymidine monophosphate is formed along with one mole of tetrahydrofolate for each mole of reduced enzyme-bound flavin. The classic TS inactivator 5-fluoro-2'-deoxyuridine monophosphate (FdUMP) was able to bind to the reduced enzyme but was unable to oxidize the flavin, even in the presence of CH2THF. Furthermore, the nucleotide binding site of the enzyme treated with FdUMP and CH2THF was irreversibly blocked, suggesting the formation of a stable substrate adduct analogous to that formed by the well-studied thyA-encoded TS. The formation of inactivated enzyme without flavin oxidation indicates that methylene transfer from the folate to the nucleotide occurs prior to flavin redox chemistry.  相似文献   

17.
In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E(sq/hq)) is ~170 mV, a striking difference. The former greatly prefers NAD(+) as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD(+)), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 ? resolution crystal structures for XDH, XO, the NAD(+)- and NADH-complexed XDH, E(sq/hq) were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E(sq/hq) difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD(+) binding at XDH. Instead, the positive charge of the NAD(+) ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD(+) molecule all contribute to altering E(sq/hq) upon NAD(+) binding to XDH.  相似文献   

18.
Bacterial bioluminescence is initiated by the oxygenation reaction of reduced flavin mononucleotide in luciferase. This enzymatic oxygenation occurs in a wide range of biological processes including cellular redox metabolism, biocatalysis, biosynthesis and homeostasis. However, little is known about the mechanism of the enzymatic reaction between singlet reduced flavin and triplet oxygen. To explore the enigmatic oxygenation, for the first time, the reaction of reduced flavin anion with oxygen was studied in bacterial luciferase by a combined quantum mechanics and molecular mechanics method as well as molecular dynamics simulation. The calculated results demonstrate that the reaction proceeds via a proton-coupled electron transfer (PCET) pathway, and the essential αHis44 acts as a catalytic acid to provide the proton. The currently proposed PCET mechanism clearly describes the initial steps of bacterial bioluminescence, and could be suitable for the other flavin oxygenation reactions in enzymes.  相似文献   

19.
Abstract— Quenching of the degradative photobleaching of FMN in anaerobic aqueous solution, and of the flavin-sensitized photo-oxidation of EDTA, alcohols, glycols, and glycerol, has been examined using flash techniques. The quenching can be produced by addition of KI, by successive flashes, and by increasing the flavin concentration (self-quenching). It is concluded that the lowest triplet is the photoreactive species in all systems, that the successive flash effect is due to triplet quenching by a reaction product, and that the concentration quenching may be due to either triplet-triplet annihilation or to reaction between a ground-state flavin and a flavin triplet.  相似文献   

20.
Abstract —The mechanism of the photooxidation of ascorbic acid by flavin mononucleotide has been studied by steady state and flash photolysis techniques. The primary reaction consists of an electron abstraction from ascorbic acid by the flavin singlet and triplet states by a diffusional process and in the latter case also by the formation of a triplet flavin-ascorbic acid complex. Under anaerobic conditions, the secondary reactions consist primarily of a radical recombination and a 'dark'chemical back reaction, leading to the reformation of unchanged flavin and ascorbic acid. In the presence of oxygen, the 'back reactions'are prevented, resulting in the efficient photooxidation of ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号