首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Luminescence of complexes between -cyclodextrin and phenanthrene, fluorene, or naphthalene-d8 in aqueous solutions was studied at room temperature. It is found that the addition of acetone, in the absence of heavy atoms, results in the phosphorescence of these complexes at 293 K due to triplet-triplet energy transfer. The conclusion is drawn that a heavy atom is necessary for population of a triplet level, because the intersystem crossing of an aromatic molecule in the cyclodextrin cavity is suppressed due to restriction of vibration-relaxation interactions with a medium. The phosphorescence multiply increases when lightscattering polycomplexes between an aromatic molecule and cyclodextrin in the presence of a heavy atom and a sensitizer are formed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1966–1969, October, 1995.The work was financially supported by the Russian Foundation for Basic Research (Project No. 94-03-O9961).  相似文献   

2.
Fluorescence of the inclusion complexes with different compositions formed by naphthalene-h8, naphthalene-d8, 2,7-dimethylnaphthalene (DMN), and 2-benzylnaphthalene (BN) with β-cyclodextrin (β-CD) in water was studied. Two types of fluorescence are observed, monomer (MF) and excimer (EF_ fluorescence. The excimer fluorescence of the 2∶2 complex emitted by aggregated light-dispersing crystals forming a precipitate, whereas is the MF is concentrations, EF predominates for the resulting complexes. A proposed structure of the inclusion complexes was derived from MNDO/PM3 semiempirical quantum-chemical calculations. The EF is caused by the structure of the complex, in which both naphthalene molecules are separated by a distance of 4.7 Å: they lie in parallel orientation to each other, whereby one ring is displaced from the other by one-fourth of the length of the naphthalene ring. The complexes of 2,7-DMN and 2-benzylnaphthalene with β-CD do not exhibit EF. For the 2∶2 complex of 2,7-DMN with β-CD, this is due to the fact that the aromatic fragments are removed too far from one another 2-Benzylnaphthalene is unable to form an inclusion complex with β-CD, in whose structure the aromatic fragments inside the cavity could be arranged in parallel planes; instead, it forms a 1∶2 complex with β-CD.  相似文献   

3.
Naphthalene-d8—-cyclodextrin—adamantane triple complexes were prepared in an aqueous solution at room temperature. Irradiation ( = 285 nm) of the solution in the presence of molecular oxygen results in the long-lived ( = 10.3 s) room temperature phosphorescence (RTP). The removal of oxygen from the solution increases the RTP intensity and phosphorescence lifetime by 1.5 times. The RTP spectrum contains a well-resolved vibrational structure, whose bands are assigned to full symmetric vibrations of naphthalene, their overtones, and the combination tones of full symmetric vibrations. The quantum-chemical calculation of the triple complex structure confirms that both naphthalene and adamantane can simultaneously be included into the -cyclodextrin cavity and suggests that the role of the latter as the third component is the more efficient shielding of naphthalene from the oxygen effect due to both the formation of three-component complexes and their aggregation to form submicronic particles.  相似文献   

4.
5.
β-Cyclodextrin formed the most robust complexes with o-carboranols 1b and 1c in aqueous solution, and the association constants estimated from NMR titration studies indicated Ka >1 × 106 M−1 and Ka = 6 × 105 M−1, respectively.  相似文献   

6.
Photocontrolled reversible room temperature phosphorescence (RTP) emission engendered by the complexation of β-cyclodextrin (β-CD) and α-bromonaphthalene (α-BrNp) can be employed to address the threading and dethreading of the pseudorotaxane formed between β-CD and sodium 2-hydroxy-5-((4-nitrophenyl)diazenyl)benzoate (DAYR) in the ternary system in aqueous solution.  相似文献   

7.
The release control of fragrances, benzyl acetate (BA), citral (CR), linalool (LL), citronellol (CL) and linalyl acetate (LA), was conducted using β-cyclodextrin (β-CyD), 2-hydroxypropyl-β-CyD (HP-β-CyD) and 2,6-di-O-methyl β-CyD (DM-β-CyD). The release rate of the fragrances from 30% ethanol/water solution was significantly suppressed by the complexation with these CyDs, and the suppressing effect increased in the order of β-CyD?<?HP-β-CyD?<?DM-β-CyD. The concentration-dependent change of the release rate was quantitatively analyzed to obtain the stability constant (Kc) of the fragrance-CyD complexes. These Kc values were in good agreement with those determined by the solubility method. The results suggest that the release of fragrances can be prolonged by the complexation with β-CyDs and their effects can be controlled by choosing appropriate CyD derivatives with higher Kc values and by setting proper concentrations of the host molecules.  相似文献   

8.
The objective of this research was to improve the aqueous solubility, dissolution rate and, consequently, bioavailability of diacerein, along with avoiding its side effect of diarrhea, by complexation with β-cyclodextrin (β-CD) and HP-β-cyclodextrin (HP-β-CD). Phase solubility curve was classified as an AN type for both the CDs, which indicated formation of complex of diacerein with β-CD and HP-β-CD in 1:1 stoichiometry and demonstrating that both CDs are proportionally less effective at higher concentrations. The complexes were prepared by kneading method and were evaluated to study the effect of complexation on aqueous solubility and rate of dissolution in phosphate buffer (pH 6.8). Based on the dissolution profile HP-β-CD was selected for preparing fast disintegrating tablet of diacerein which was compared with marketed formulation (MF-J). The HP-β-CD complex was probed for Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies which evidenced stable complex formation and increase in amorphousness of diacerein in complex. In brief, the characterization studies confirmed the inclusion of diacerein within the non-polar cavity of HP-β-CD. HP-β-CD complex showed improved in vitro drug release profile compared to pure drug and similar to that of marketed formulation respectively.  相似文献   

9.
Complexation between sulconazole (SULC), an imidazole derivative with in vitro antifungal and antiyeast activity, and β-cyclodextrins (β-CD and HP-β-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (1H-NMR). In the solid state, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and RX diffraction studies were used. Solubility studies suggested the existence of inclusion complex between SULC and β-CD or HP-β-CD. 1H-NMR spectroscopy studies showed that the complex formed occurs by complexation of imidazole ring into inner cavity. DSC studies showed the existence of a complex of SULC with β-CD. The TGA and RX studies confirmed the DSC results of the complex. Solubility of SULC in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.  相似文献   

10.
Host-guest complexation of benzoic acid, its nitro-derivatives, 1- and 2-naphthols and 1- and 2-naphthylamines with-cyclodextrin have been investigated by a spectrophotometric method. Formation constants for both the conjugate acid and base forms have been determined. Only in the case of 4-nitrobenzoic acid, is a more stable complex formed with the ionic species, compared with the undissociated one, supporting the assumption that resonance charge delocalisation and London dispersion interactions are responsible for their stability. With naphthalene derivatives, the 2-isomers give more stable complexes indicating deeper penetration into the cyclodextrin cavity.  相似文献   

11.
Complexation of ebastine (EB) with hydroxypropyl and methyl-β-cyclodextrin (HP-β-CD and Me-β-CD) was studied in aqueous solutions and in the solid state. The formation of inclusion complexes in aqueous solutions was analysed by the solubility method. The assays were designed using low CD concentrations compared with the solubility of these derivatives in order to avoid non-inclusion phenomena and to obtain a linear increase in EB solubility as a function of CD concentration. The values of complexation efficiency for HP-β-CD and Me-β-CD were 1.9 × 10?2 and 2.1 × 10?2, respectively. It seems that the non polar character of the methyl moiety slightly favoured complexation. In relation to solid state complexation, 1:1 EB:CD systems were prepared by kneading, and by heating a drug-CD mixture at 90 ºC. They were analysed using X ray diffraction analysis by comparison with their respective physical mixtures. A complex with a characteristic diffraction pattern similar to that of the channel structure of β-CD was formed with Me-β-CD in 1:1 melted and 1:2 EB:CD kneaded systems. Complexation with HP-β-CD was not clearly evidenced because only a slight reduction of drug crystallinity was detected. Finally, the loading of EB in two β-CD polymers cross-linked with epichlorohydrin yielded 7.3 and 7.7 mg of EB/g polymer respectively.  相似文献   

12.
The inclusion complexes of isoquercitrin (IQ) with cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and dimethyl-β-cyclodextrin (DM-β-CD) have been investigated using the methods of steady-state fluorescence, UV-vis absorption and induced circular dichroism. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was measured in the case of DM-β-CD due to the increased hydrophobicity of the host cavity, followed by HP-β-CD and β-CD. The effect of pH on the complexation process was also quantitatively assessed. IQ exists in different molecular forms depending on pH and β-CDs were most suitable for inclusion of the neutral form of IQ. The phase-solubility diagrams obtained with β-CD, HP-β-CD and DM-β-CD were all classical AL type. And DM-β-CD provided the best solubility enhancement, 12.3-fold increase compared to 2.8- and 7.5-fold increase for β-CD and HP-β-CD. The apparent stability constants obtained from the solubility data at 25 °C were comparable with those obtained from the fluorescence assays. Moreover, 1H NMR was carried out, which revealed that the IQ favorably inserted into the inner cavity from the chromone part instead of the phenyl part, which was in agreement with molecular modeling studies.  相似文献   

13.
The dehydrogenative β'-functionalization of α-substituted β-keto esters with indoles proceeds with high regioselectivities (C3-selective for the indole partner and β'-selective for the β-keto ester) and good yields under mild palladium catalysis at room temperature with a variety of oxidants. Two possible mechanisms involving either late or early involvement of indole are presented.  相似文献   

14.
Sulfanilamide belongs to the group of drugs that have a bacteriostatic effect on different pathogenic microorganisms. This activity originates from the competitive antagonism with p-aminobenzoic acid, which is an integral part of folic acid. The safe use of sulfanilamide is limited due to poor solubility in the aqueous medium. Therefore, the aim of this paper is the synthesis of sulfanilamide, as well as preparing and structural characterization of its inclusion complexes with cyclodextrins. The crude sulfanilamide was obtained in the synthesis between acetanilide and chlorosulfonic acid according to the standard procedure. The synthesized sulfanilamide was recrystallized from water in order to obtain the satisfactory purity of the substance. Sufanilamide was complexed with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin by the co-precipitation method. A molecular encapsulation of sulfanilamide was confirmed by using FTIR, 1H-NMR, XRD and DSC methods. Phase-solubility techniques were used to assess the formation of the inclusion complex between sulfanilamide and cyclodextrins. The photostability of sulfanilamide and its inclusion complexes was estimated by UVB irradiation in a photochemical reactor by applying the UV–Vis method. Based on the UV–Vis analysis, sulfanilamide:2-hydroxypropyl-β-cyclodextrin complex was presented as more photostable than sulfanilamide:β-cyclodextrin complex and sulfanilamide. The obtained results enable the potential use of these inclusion complexes for the preparation of oral formulations due to the enhanced solubility of sulfanilamide.  相似文献   

15.
In the present work the feasibility of β-cyclodextrin in complexation was explored, as a tool for improving the solubility and biological ability of daidzein derivatives. A series of phosphorylated daidzein derivatives featuring different chain lengths were synthesized through a modified Atherton-Todd reaction and their inclusion complexes with βCD were prepared by coprecipitation method. The inclusion complexation behavior was studied by fluorescence, UV, FT-IR, MS and (1)H NMR. The results showed that only phosphorylated daidzein derivative carrying small substituent group ((C(2)H(5)O)(2)PO) entered the cavity of βCD and formed 1:1 inclusion complex. The formation constant was 175(mol/L)(-1).  相似文献   

16.
In the paper, the two chemically modified β-cyclodextrin derivatives of 4,4´-diaminodiphenyl ether-bridged-bis-β-cyclodextrins (ODA-bis-β-CD) and p-aminobenzenesulfonic acid-β-cyclodextrin (ABS-β-CD) were synthesized, and then these two β-cyclodextrin derivatives were respectively formed into inclusion complexes with benzophenone (BP) by co-precipitation method. The structure of the inclusion complexes were characterized by UV/vis spectroscopy, FT-IR spectroscopy, elemental analysis, 1H NMR spectroscopy and XRD. Spectral titration was performed to study the inclusion behavior of the inclusion complexes. These experiments indicated that two inclusion complexes were formed at a stoichiometric ratio of 1:1 and the inclusion stability constants at different temperatures were calculated using the Benesi–Hildebrand (B–H) equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were obtained. As a result, it was found that the two chemically modified β-cyclodextrins containing BP were exothermic and spontaneous process (ΔG°?<?0), and the processes of inclusion complexation were mainly enthalpy driven with negative or minor negative entropic contribution.  相似文献   

17.
The present work revealed there was a conceptual difference in the thermal decomposition behaviors between the complexed β-cyclodextrin (CD) in an inclusion system and the β-CD complex of guest. The thermal decomposition behaviors of the solid inclusion complexes of β-CD with ethylenediamine (Eda), diethylenetriamine (Dta) and triethylamine (Tea) were investigated using nonisothermal thermogravimetry (TG) analysis based on weight loss as a function of temperature. In view of TG profiles, a consecutive mechanism describing the formation and thermal decomposition of the three solid supermolecules of β-CD was presented. Heating rate has very different effects on the thermal decomposition behaviors of these complexes. The faster the heating rate is, the higher the melting-decomposition point of the complexed β-CD in an inclusion system is, and on the whole the bigger the rate constant (k) of the thermal decomposition reaction of the complexed β-CD is. The thermal decomposition process of the complexed β-CD for each inclusion system is determined to be simple first-order reaction using Ozawa method. The apparent activation energies (E a) and frequency factors (A) of the thermal decomposition reactions of the complexed β-CD molecules have been also calculated. It is found that when the decomposition reaction of the complexed β-CD encountered a large value of E a, such as that in Dta–β-CD system, an apparent compensation effect of A on E a can provide enough energy to conquer the reaction barrier in prompting the k value of thermal decomposition reaction of the complexed β-CD according to Arrhenius equation.  相似文献   

18.
A novel method for the synthesis of N-monosubstituted aniline and its derivatives β-cyclodextrin(CD)host-guest complexes has been presented.The mild reaction gives the title compounds with high selectivity in good yields of 90-98%.  相似文献   

19.
A novel method for the synthesis of N-monosubstituted aniline and its derivatives via β-cyclodextrin (CD) host-guest complexes has been presented. The mild reaction gives the title compounds with high selectivity in good yields of 90-98%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号