首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
This article presents the experimental study and comparative performance evaluation of four types of cook stoves using energy and exergy analysis. Analysis of four different types of cook stove models viz. Envirofit, Mangla, Harsha and Vikram were selected and the water boiling test has been carried out. The suitable biomass available from the local market was prepared in the proper size as described in the Bureau of Indian Standards (BIS) and has been used as the fuel for cook stove in this experimental study. The aluminium pots of proper capacity as per BIS standard have been used for different cook stoves. The data from the experiments was collected and evaluated for the energy and exergy efficiencies for different models. Based on the data analysis it is found that the exergy efficiency is much lower than that of the energy efficiency for all the four models. It is also found that the both the efficiencies of Envirofit model are found to be higher than those of other models studied here.  相似文献   

2.
Oligofluorenes (a trimer, pentamer, and heptamer) with one fluorenone unit in the center (OFnK: n=3, 5, or 7) were synthesized and used as models to understand the origin of the low-energy emission band in the photoluminescence and electroluminescence spectra of some polyfluorenes. All compounds form glasses with T(g) at 30 degrees C (OF3 K), 50 degrees C (OF5 K) and 57 degrees C (OF7 K). Oligomers OF5 K and OF7 K exhibit smectic liquid crystal phases that undergo transition to isotropic melts at 107 and 205 degrees C, respectively. Oligomer OF5 K could be obtained in form of single crystals. The X-ray structure analysis revealed the helical nature of the molecule and a helix reversal defect located at the central fluorenone unit. The packing pattern precludes formation of excimers. Electrochemical properties were investigated by cyclic voltammetry. The ionization potential (I(p)) and electron affinity (E(a)) were calculated from these data. Studies of the photophysical properties of OFnK in solution and thin film by steady-state and time-resolved fluorescence spectroscopic measurements suggest efficient funneling of excitation energy from the photoexcited fluorene segments to the low-energy fluorenone sites by both intra- and intermolecular hopping events whereby they give rise to green emission. Intermolecular energy transfer was investigated by using a model system composed of a highly defect free polyfluorene PF2/6 doped by OFnK. F?rster-type energy transfer takes place from PF2/6 to OFnK. The energy-transfer efficiency increases predictably with increasing concentration of OFnK.  相似文献   

3.
采用温和的固相反应法合成了具有四方相结构的铽一铕共掺杂的硅酸铝钠(NaAlSiO_4:Tb~(3+),Eu~(3+))发光材料.利用粉末X射线衍射(XRD)、荧光光谱(PL)、时间分辨光谱(TRPL)以及荧光寿命等手段对合成的样品进行表征.研究结果表明:通过改变NaAlSiO_4:Tb~(3+),Eu~(3+)中Eu~(3+)离子的掺杂浓度,可实现其绿光及红光发射的调控;由于Tb~(3+),Eu~(3+)离子间的有效能量传递,Tb~(3+)离子的共掺杂可显著增强该基质中Eu~(3+)离子的发光性能;该能量传递现象可由TRPL光谱等手段进行证实,根据荧光寿命的数值计算可知,从Tb3~(3+)向Eu~(3+)离子的能量传递效率高达95%.  相似文献   

4.
NUMBER AND DISTRIBUTION OF CHROMOPHORE TYPES IN NATIVE PHYCOBILIPROTEINS   总被引:1,自引:0,他引:1  
Abstract— Fluorescence lifetimes and absolute quantum yields of a number of chromatographically pure phycobiliproteins have been determined. In conjunction with absorption, fluorescence emission and polarization spectra, these data were used to calculate the number of different types of chromophore, sensitizing and fluorescing, per chromoprotein.
To characterize the spatial distributions of the chromophores, the observed emission anisotropies were compared with those calculated from models, using the Förster transfer mechanism and the Jablonski 'active sphere' approximation. The experimental values are more consistent with surface locations for the fluorescing chromophores rather than with their distribution throughout the volume.
Theoretical efficiencies of transfer between sensitizing and fluorescing chromophores on the same macromolecule are consistent with those observed. The transfer efficiency from phycoerythrin prosthetic groups to chlorophyll a compared with that for transfer via phycocyanin indicates that the latter process is probably the favoured migration route.  相似文献   

5.
This work describes the in situ synthesis of oligonucleotide arrays on glass surfaces. These arrays are composed of features defined and separated by differential surface tension (surface tension arrays). Specifically, photolithographic methods were used to create a series of spatially addressable, circular features containing an amino-terminated organosilane coupled to the glass through a siloxane linkage. Each feature is bounded by a perfluorosilanated surface. The differences in surface energies between the features and surrounding zones allow for chemical reactions to be readily localized within a defined site. The aminosilanation process was analyzed using contact angle, X-ray photoelectron spectroscopy (XPS), and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS). The efficiency of phosphoramidite-based oligonucleotide synthesis on these surface tension arrays was measured by two methods. One method, termed step-yields-by-hybridization, indicates an average synthesis efficiency for all four (A,G,C,T) bases of 99.9 +/- 1.1%. Step yields measured for the individual amidite bases showed efficiencies of 98.8% (dT), 98.0% (dA), 97.0% (dC), and 97.6% (dG). The second method for determining the amidite coupling efficiencies was by capillary electrophoresis (CE) analysis. Homopolymers of dT (40- and 60mer), dA (40mer), and dC (40mer) were synthesized on an NH(4)OH labile linkage. After cleavage, the products were analyzed by CE. Synthesis efficiencies were calculated by comparison of the full-length product peak with the failure peaks. The calculated coupling efficiencies were 98.8% (dT), 96.8% (dA), and 96.7% (dC).  相似文献   

6.
Light harvesting is a key step in photosynthesis but creation of synthetic light‐harvesting systems (LHSs) with high efficiencies has been challenging. When donor and acceptor dyes with aggregation‐induced emission were trapped within the interior of cross‐linked reverse vesicles, LHSs were obtained readily through spontaneous hydrophobically driven aggregation of the dyes in water. Aggregation in the confined nanospace was critical to the energy transfer and the light‐harvesting efficiency. The efficiency of the excitation energy transfer (EET) reached 95 % at a donor/acceptor ratio of 100:1 and the energy transfer was clearly visible even at a donor/acceptor ratio of 10 000:1. Multicolor emission was achieved simply by tuning the donor/acceptor feed ratio in the preparation and the quantum yield of white light emission from the system was 0.38, the highest reported for organic materials in water to date.  相似文献   

7.
Rapid micron-resolution quantitative elemental mapping is possible at the University of Surrey using a combination of proton induced X-ray emission tomography (PIXE-T) and simultaneous on/off-axis scanning transmission ion microscopy-tomography (STIM-T). A preliminary analysis of hair was performed. However, experimental uncertainties lead to large errors in tomograms and this work focuses on identifying and reducing the sources of error in both tomographic and 2D mapping. The STIM-T counts per pixel are used to normalise the PIXE-T data for charge. However, the geometry of the collimator and the scattering foil affects the detection rate since the loss of protons in the collimator increases as energy loss increases due to scattering. Errors in the PIXE geometric efficiency are greater in mapping when the detector is close to the sample. Moreover when a ‘funny’ filter was used for PIXE-T the uncertainty in the efficiency was found to increase because the sample-filter distance changes during the experiment.  相似文献   

8.
The main scope of our work was to investigate the usefulness of the PROZA correction method and CALIBRATION CURVE construction for quantitative X-ray microanalysis of biological soft, freeze-dried tissues. The test samples with a known elemental concentration of NaCl, MgCl2, KH2PO4 and Na2SO4 were prepared on the basis of 20% porcine skin gelatine. A control sample containing 20% gelatine was used for sulphur subtraction. Dissolved gelatine solutions were cooled with liquid nitrogen and then cut in cryomicrotome into 16µm thick slices. The sections were lyophilised, coated with carbon and analysed by means of a scanning electron microscope combined with an energy dispersive (ED) spectrometer. The homogeneity of the prepared samples was verified using the Fishers test. Only homogenous samples were used for calibration. The significance of the (z) (PROZA) correction method for biological sample analysis was verified by comparing the prepared standard and entering it into the Voyager computer program memory with the remaining samples of a known elemental content. The differences between the standard and the samples were noted for all elements analysed. There was no sample matching the standard after the PROZA correction procedure. A high correlation r factor (above 0.99) for all analysed elements indicates that CALIBRATION CURVES construction could be suitable for quantitative X-ray microanalysis of biological samples.  相似文献   

9.
New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2) )-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50?nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10?nm whereas a fluoro substituent blue-shifts the emission energy by about 6?nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475?nm and Φ(PL) =0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485?nm and Φ(PL) =0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100?cd?m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4?%, respectively, have been achieved.  相似文献   

10.
Energy transfer studies have been made in a terbium-erbium coactivated calibo-glass system at room temperature and at liquid-air temperature. A study of the emission and decay of 5D4 level of Tb3+ has been made by varying the acceptor (Er3+) concentration. Probabilities and efficiencies of energy transfer as well as donor-acceptor distances have been calculated. At low acceptor concentration the decay of the donor (Tb3+) emission has been found to be diffusion limited. At high acceptor concentration the mechanism governing the transfer is found to be dipole-dipole.  相似文献   

11.
利用密度泛函理论(DFT)的B3LYP方法, 对烷基碘化物分子C2H2F3I和n-C3H4F3I的C—I解离势能曲线进行了理论计算, 并采用B3LYP方法和MPn(n=2, 3, 4)方法精确计算了C—I键解离能. 解离能计算进行了零点振动能(ZPVE)校正, 并运用完全均衡校正法对基函数重叠误差(BSSE)进行校正. 利用微波放电激励方法, 对C2H2F3I和n-C3H4F3I的发射谱进行观测. 实验结果表明, 通过微波放电激励这两种分子, 均可产生1315 nm发射谱, 说明利用微波放电可使C2H2F3I和n-C3H4F3I分子的C—I键解离, 从而产生碘原子.  相似文献   

12.
An analytical model that enables the calculation of the flotation rate constant of particles as a function of particle size with, as input parameters, measurable particle, bubble, and hydrodynamic quantities has been derived. This model includes the frequency of collisions between particles and bubbles as well as their efficiencies of collision, attachment, and stability. The generalized Sutherland equation collision model and the modified Dobby-Finch attachment model developed previously for potential flow conditions were used to calculate the efficiencies of particle-bubble collision and attachment, respectively. The bubble-particle stability efficiency model includes the various forces acting between the bubble and the attached particle, and we demonstrate that it depends mainly on the relative magnitude of particle contact angle and turbulent dissipation energy. The flotation rate constants calculated with these models produced the characteristic shape of the flotation rate constant versus particle size curve, with a maximum appearing at intermediate particle size. The low flotation rate constants of fine and coarse particles result from their low efficiency of collision and low efficiencies of attachment and stability with gas bubbles, respectively. The flotation rate constants calculated with these models were compared with the experimental flotation rate constants of methylated quartz particles with diameters between 8 and 80 micro m interacting with gas bubbles under turbulent conditions in a Rushton flotation cell. Agreement between theory and experiment is satisfactory.  相似文献   

13.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

14.
Several fluorene or carbazole-based dithienosiloles (DTSs) have been synthesized and their thermal, photophysical, and electrochemical properties have been systematically investigated. These compounds show high thermal stability with glass transition temperature above 110 °C as well as decomposition temperatures at ∼400 °C. Intense green emission is observed in the spectral region of 500-510 nm for all compounds (ΦPL=0.31-0.80), that is, attributed to both the 5,5′-substituents of the DTS ring and DTS-based π-π transition. Based on the emission spectra at 77 K, the triplet energy for these compounds was calculated to be within 2.1-2.2 eV, indicating that they may be used as host materials for red emitters in organic light-emitting diodes (OLEDs). All compounds exhibit reversible oxidation and possess low-lying LUMO energies, owing to the conjugated fluorene/carbazole substituents on the DTS. This along with the high thermal/electrochemical stabilities and high fluorescent quantum efficiencies makes the new DTSs compounds promising candidates for use in OLEDs as emitters, host and electron-transporting materials.  相似文献   

15.
A critical review of the various models existing in the literature for the calculation of the collision efficiency between particles and single, rising gas bubbles is presented. Although all of these collision models predict that the collision efficiency increases with particle size, their dependence on the latter is different because of the various assumptions and hydrodynamic conditions used in each model. Collision efficiencies of quartz particles with single bubbles have been obtained from experimental flotation experiments under conditions where the attachment and stability efficiencies were at, or near, unity. These collision efficiencies were then used to test various collision models. Good agreement between the experimental and calculated collision efficiencies was only obtained with the Generalised Sutherland Equation. The differences in collision efficiencies obtained between the various models were mainly explained in terms of, firstly, the degree of mobility of the bubble surface and, secondly, a consideration of the inertial forces acting on the particles.  相似文献   

16.
The chromatographic efficiency that could be achieved in temperature‐programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns.  相似文献   

17.
The spectral properties of Na2SO4 have been studied by means of infrared stimulated luminescence (IRSL), thermoluminescence (TL) and radioluminescence (RL) in the range of 200-800 nm. The observed changes in the RL emission spectra after an annealing treatment (400 degrees C for 1 h) could be linked to thermal phase transformations and alkali self-diffusion through the lattice of this salt. Despite the complexity of the luminescence spectra structure, five emission bands peaked at 330, 345, 385, 460 and 630 nm could be distinguished. The UV-blue TL emission of this material exhibits a maximum peaked at 230 degrees C which is well correlated with the differential thermal analysis (DTA) and can be associated with the thermal transformation of the orthorhombic sodium sulphate (Na2SO4) V (thenardite) phase into Na2SO4 III, II and I phases. Taking into account the observed changes on the structural phase transition by X-ray diffraction (XRD) from 16 degrees C onwards, this material does not show satisfactory features for radiation dosimetry, but could be employed for temperature calibration of TL readers.  相似文献   

18.
In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.  相似文献   

19.
A green and environment-friendly magnetically separable nanocomposite, glutathione@magnetite was fabricated sonochemically through the functionalization of Fe3O4 by glutathione which was well characterized using Fourier-transform infrared spectroscopy, ultravoilet-visible spectroscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetric analysis, vibrating sample magnetometer, Brunauer-Emmett-Teller, and high-resolution transmission electron microscope. The parameters affecting adsorption including pH, temperature, contact time, initial adsorbate concentration, and adsorbent amount were optimized by batch experiments. The magnetic glutathione@magnetite was applied for the removal of uranium(VI) in water with maximum adsorption capacity found to be 333.33 mg/g in 120 min at a neutral pH at 25 °C showing high efficiency for U(VI) ions. Furthermore, adsorption results obtained from UV-vis spectroscopy were validated by inductively coupled plasma optical emission spectroscopy. The thermodynamic parameters, viz Gibbs free energy (ΔGº), standard enthalpy change (ΔHº), and standard entropy change (ΔSº) of the process were calculated using the Langmuir constants. The pseudo-second-order kinetics model is seen to be applicable for describing the uptake process using a kinetics test. Moreover, desorption studies reveals that glutathione@magnetite can be used repeatedly, and removal efficiency shows only a small decrease after six cycles. Thus, glutathione@magnetite acts as a potential adsorbent for the removal of U(VI) from the water with great adsorption performance.  相似文献   

20.
The molecular and crystal structure of 3-(trifluoromethyl)phenanthrene has been determined by X-ray diffraction. The structure of the isolated molecule has been calculated using electronic structure methods at the HF/3-21G, HF/6-31G, MP2/6-31G and B3LYP/6-31G levels. The potential energy surfaces for the rotation of the CF3 group in both the isolated molecule and cluster models for the crystal were computed using electronic structure methods. The barrier height for CF3 rotation in the isolated molecule was calculated to be 0.40 kcal mol(-1) at B3LYP/6-311+G//B3LYP/6-311+G. The B3LYP/6-31G calculated CF3 rotational barrier in a 13-molecule cluster based on the X-ray data was found to be 2.6 kcal mol(-1). The latter is in excellent agreement with experimental results from the NMR relaxation experiments reported in the companion paper (Beckmann, P. A.; Rosenberg, J.; Nordstrom, K.; Mallory, C. W.; Mallory, F. B. J. Phys. Chem. A 2006, 110, 3947). The computational results on the models for the solid state suggest that the intermolecular interaction between nearest neighbor pairs of CF3 groups in the crystal accounts for roughly 75% of the barrier to rotation in the solid state. This pair is found to undergo cooperative reorientation. We attribute the CF3 reorientational disorder in the crystal as observed by X-ray diffraction to the presence of a pair of minima on the potential energy surface and the effects of librational motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号