首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant (.Br-2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.  相似文献   

2.
The 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO) spin trap is very attractive for spin trapping studies due to its high stability and high reaction rates with various free radicals. However, the identification of FDMPO radical adducts is a challenging task since they have very comparable Electron Spin Resonance (ESR) spectra. Here we propose a new method for the analysis and interpretation of the ESR spectra of FDMPO radical adducts. Thus, overlapping ESR spectra were analyzed using computer simulations. As a result, the N- and F-hyperfine splitting constants were obtained. Furthermore, an artificial neural network (ANN) was adopted to identify radical adducts formed during various processes (e.g., Fenton reaction, cleavage of peracetic acid over MnO(2), etc.). The ANN was effective on both "known" FDMPO radical adducts measured in slightly different solvents and not a priori "known" FDMPO radical adducts. Finally, the N- and F-hyperfine splitting constants of ·OH, ·CH(3), ·CH(2)OH, and CH(3)(C═O)O(·) radical adducts of FDMPO were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p)//B3LYP/6-31G++//B3LYP/EPR-II level of theory to confirm the experimental data.  相似文献   

3.
采用液相色谱-电子自旋共振波谱(LC/ESR)联用技术、液相色谱-质谱(LC/MS)联用技术结合自旋捕集技术,研究了脂氧合酶(LOX)催化双高-γ-亚麻酸(DGLA)脂质过氧化过程中产生的碳自由基.以α-[4-吡啶基-1-氧]-N-叔丁基氮酮(POBN)为自旋捕集剂,在LOX-DGLA反应混合物中与碳自由基形成自旋加合物后,根据各加合物在LC/UV/ESR和LC/MS中对应的保留时间,确定加合物的分子量,进一步根据加合物质谱裂解方式确定其结构.结果表明,在LOX催化DGLA脂质过氧化过程中产生的碳自由基主要包括~·C_7H_(13)O_2,~·C_(10)H_(17)O_2和~·C_5H_(11),分别来自DGLA脂氧自由基(8-,11-,15-LO~·)的β-裂解.此结果有利于进一步研究DGLA在体内的脂质过氧化过程及该过程中产生的碳自由基的生理作用.  相似文献   

4.
Using electron spin resonance (ESR) spectroscopy, we revealed the presence of four radical species in gamma-ray irradiated ginseng (Agaliaceae). Before irradiation, the representative ESR spectrum of ginseng is composed of a sextet centered at g = 2.0, a sharp singlet at the same g-value, and a singlet at about g = 4.0. The first one is attributable to a hyperfine (hf) signal of Mn2+ ion (hf constant: 7.4 mT). The second one is due to an organic free radical. The third one is originated from Fe3+. Upon gamma-ray irradiation, a new ESR (the fourth) signal was detectable in the vicinity of g = 2.0 region. The progressive saturation behaviors of the ESR signals at various microwave power levels were indicative of different relaxation time for those radicals. The anisotropic ESR spectra were detected by the angular rotation of the sample tube. This is due to the existence of anisotropic microcrystalline in the ginseng powder sample.  相似文献   

5.
Accidental exposure dose assessment by electron spin resonance (ESR) technique from the free radicals generated in a cotton handkerchief has been attempted in this investigation. The cotton handkerchief, a common material carried by individuals, was taken as the medium for free radical estimation. About 55 mg of the irradiated piece of cloth was loaded into a quartz tube and the dose dependence of the ESR signal at g=2.0026 was measured at room temperature, using a Bruker ESP-300 ESR spectrometer in X-band (9.74 GHz). The intensity of this signal was found to be proportional to the dose in the range of 1–1000 Gy. The stability of the free radicals with time of storage was followed. Dependence of dose rate as well as the presence of water on the yield of free radicals were also investigated.  相似文献   

6.
Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.  相似文献   

7.
The radicals formed in poly(methyl methacrylate) (PMMA) under vacuum by UV irradiation at room temperature were carefully examined from 77 K to 300 K by electron spin resonance (ESR). The conventional nine-line spectrum was observed with significant overall intensity changes in contrast to previous reports. The intensity decreases greatly as the temperature increases from 77 K to 100 K. The intensity of the ESR spectrum increases as the temperature increases gradually from 100 K to 260 K. The spectral changes were reversible at all temperatures. Three different models are considered to interpret the temperature dependence of the intensity of the ESR spectrum. The results indicate that the ESR spectrum depends on (1) the steady-state concentration of the propagating radical in the polymer, (2) the conformational distributions of the radicals, and (3) the environmental structures of the polymer matrix.  相似文献   

8.
Kinetic behaviors and characterization of the natural and γ-induced radicals in irradiated red pepper have been investigated by electron spin resonance (ESR) spectroscopy to explore the possibility of using this technique in detecting irradiated red pepper and to evaluate the eventual dosimetric features of this widely used food. Unirradiated samples exhibited a single resonance line centered at g=2.0050±0.0005. Photo-exposure of the samples was found to increase the signal intensity. An increase in temperature created a drastic decrease in the concentration of natural radicals responsible for the single resonance line. Irradiation was observed to induce increases in the intensity of single resonance line (signal I) and a radiation specific doublet and/or triplet (signal II) also centered at g=2.0050 but detectable only at high spectrometer gains. The intensities of both signals increased with increasing radiation dose. The signals I and II were found to decay with different rates depending on the temperature. The results of a fitting procedure applied to the experimental signal decay curves and those obtained from room temperature spectra simulation calculations were used together to determine radical species and their spectral characteristics giving rise to the observed experimental spectra. Four radical species, three carbohydrate and one semiquinone radical assigned as radicals A, B, C and D, respectively, were found to best explain the experimental results. All the radicals show large g and hyperfine splitting anisotropies varying between g=2.0028–2.0062 and 1.07–2.58 mT, respectively. The half lives of the radicals were found to depend strongly on temperature. The activation energy calculated using temperature dependent half-life data were the highest for radical A (33.68 kcal/mol) and smallest for radical C (11.83 kcal/mol).  相似文献   

9.
ESR measurements of transient radicals during redox polymerization of various vinyl esters in aqueous solutions have been made by using the rapid-mixing flow method. The initiation was by means of hydroxyl and amino radicals from the systems titanous chloride-hydrogen peroxide and titanous chloride-hydroxylamine, respectively. The well resolved hyperfine structures obtained at monomer concentrations of about 0.05 mole/1. are unambiguously assigned to the monomer radicals formed by addition of initiator radicals to monomers. At higher monomer concentrations, additional weak signals attributed to the growing polymer radicals were observed. The effect of reaction conditions on the signal intensity has been studied in particular for vinyl acetate. The coupling constants of monomer radicals from various vinyl esters (acetate, propionate, butyrate, crotonate, and isopropenyl acetate) were obtained and the spin densities calculated. From the ESR spectra, the monomer radicals have a conformation with the substituent R (R = HO or NH2) of R? CH2? CH(OCOR′) locked in a position above or below the radical plane. This is tentatively interpreted as due to formation of intramolecular hydrogen bonds to ring structures or complexes with titanium ions. In addition, hydrogen abstraction reactions of some model compounds for poly(vinyl acetate) have been briefly studied in relation to chain transfer and grafting reactions.  相似文献   

10.
本文主要利用电子顺磁共振(ESR)自旋捕获技术研究9,10 二氰基蒽(DCA)敏化α-蒎烯(αP),β-蒎烯(βP)光氧化反应.提供了在乙腈中α-蒎烯和β-蒎烯的光氧化反应过程中存在超氧负离子基(O2-)和单重态氧(1O2)的直接证据;在四氯化碳溶剂中只捕获到1O2;在正己烷中没有捕获到O2-1O2.ESR实验结果进一步证明在乙腈中光敏氧化反应的1O2可能来自O2-和反应底物α、β-蒎烯正离子自由基之间的电荷复合(CR).  相似文献   

11.
A voltammetric and spectroelectrochemical ESR study of the reduction processes of five substituted 4-R-2-nitrophenols (R = -H, -OCH(3), -CH(3), -CN, -CF(3)) in acetonitrile was performed. In the potential range considered here (-0.2 to -2.5 V vs Fc+/Fc), two reduction signals (Ic and IIc) were detected; the first one was associated with the formation of the corresponding hydroxylamine via a self-protonation pathway. The voltammetric analysis at the first reduction signal showed that there are differences in the reduction pathway for each substituted 4-R-2-nitrophenol, being the E1/2 values determined by the inductive effect of the substituent in the meta position with respect to the nitro group, while the electron-transfer kinetics was determined by the protonation rate (k(1)+ ) of the anion radical electrogenerated. However, at potential values near the first reduction peak, no ESR signal was recorded from stable radical species, indicating the instability of the radical species in solution. Nevertheless, an intense ESR spectrum generated at the second reduction peak was detected for all compounds, indicating the monoelectronic reduction of the corresponding deprotonated 4-R-2-nitrophenols. The spin-coupling hyperfine structures revealed differences in the chemical nature of the electrogenerated radical; meanwhile, the -CF(3) and -CN substituents induced the formation of a dianion radical structure, and the -H, -CH(3), and -OCH(3) substituents provoked the formation of an anion radical structure due to protonation by acetonitrile molecules of the initially electrogenerated dianion radical. This behavior was confirmed by analyzing the ESR spectra in deuterated acetonitrile and by performing quantum chemical calculations of the spin densities at each site of the electrogenerated anionic radicals.  相似文献   

12.
Electron spin resonance (ESR) spectroscopy was used to detect and identify radicals formed by UV irradiation of Nafion and Dow perfluorinated membranes partially or fully neutralized by Cu(II), Fe(II), and Fe(III). This method allowed the monitoring of ESR signals from the paramagnetic counterions together with the appearance of membrane-derived radical species. The most surprising aspect of this study was the formation of membrane-derived radical species only in the neutralized membranes, and even in the absence of H2O2 in the case of Nafion/Cu(II) and Nafion/Fe(III). In Nafion/Cu(II), ESR spectra from radicals exhibiting hyperfine interactions with three equivalent 19F nuclei (the "quartet") and with four equivalent 19F nuclei (the "quintet") were detected. In Nafion/Fe(II) exposed to H2O2 solutions, the formation of Fe(III) was detected. Upon UV irradiation, strong signals from the chain-end radical ROCF2CF2* were detected first, followed by the appearance, upon annealing above 200 K, of the quartet signal observed in Nafion/Cu(II). In subsequent experiments with Nafion and Dow membranes neutralized by Fe(III), the ROCF2CF2* radicals were formed even in the absence of H2O2, indicating that the role of H2O2 is oxidation of Fe(II) to Fe(III); moreover, in these systems small amounts of the chain-end radicals were detected even without UV irradiation. This result validates the method used to form the radicals: the role of UV irradiation is to accelerate the formation of a signal that is produced, albeit slowly, even in the dark, and possibly during fuel cell operation. The major conclusion is that cations are involved in degradation processes; the point of attack appears to be at or near the pendant chain of the ionomer. Therefore when studying membrane stability, it is important to consider not only the formation of oxygen radicals, such as HO*, HOO*, and O2*-, that can attack the membrane but also the specific reactivity of counterions.  相似文献   

13.
甲醛光催化氧化的反应机理   总被引:49,自引:0,他引:49  
采用程序升温脱附(TPD), 电子自旋共振(ESR)及自旋捕获 电子自旋共振(ST ESR)等物理方法对甲醛光催化氧化过程中,反应物的吸附状态、自由基中间物种及反应机理 进行了研究.结果表明,在光催化氧化空气中微量甲醛的反应条件下,吸附在催化剂表面的空 气中的氧气被光生电子还原为•O-2,微量水被空穴氧化为•OH.二者为甲醛的深度氧化提供了高活性的氧化剂.甲醛是通过中间产物甲酸而氧化为终点 产物二氧化碳的.  相似文献   

14.
We found various free radicals in a commercially available pepper in Japan before and after irradiation using electron spin resonance (ESR) spectroscopy. The typical ESR spectrum of the pepper consists of a sextet centered at g = 2.0, a singlet at the same g-value and a singlet at g = 4.0. Upon gamma ray irradiation, a new pair of signals appeared in the pepper. The progressive saturation behavior (PSB) at various microwave power levels indicated quite different relaxation behaviors of those radicals. Namely, the peak intensity of the organic free radical component decreases in a monotonic fashion, whereas the Mn2+ and Fe3+ ESR signals substantially keep constant. This reflects the evidence of three independent radicals in the pepper before irradiation. The PSB of the pair peaks as induced by irradiation possessed quite different PSB from that of the free radical located at g = 2.0. We proposed a new protocol for the ESR detection of irradiated foods by the PSB method at different microwave power levels. This would call for a major modification of the CEN protocol in European Union.  相似文献   

15.
The mechanism of interaction of the peroxynitrite with some 4-alkylphenols and tyrosine was mainly studied by means of ESR spectroscopy and product analysis. The radical intermediates, detected as spin adducts to the 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), were identified as carbon-centered radicals to the benzene ring. The reaction seems to proceed via an electron transfer process (ET), most likely mediated by a NOx derivative, leading to the intermediacy of a phenoxyl-type radical as proved by the detection of the corresponding Pummerer-type ketone. No evidence of the formation of hydroxyl radicals, due to the homolytic cleavage of the peroxynitrite at physiological pH was obtained, even though DEPMPO hydroxyl spin adducts were detected: the latter most likely arises from the direct attack of the spin trap by the oxidant species. The possible involvement of HCO(3)(-)/CO(2), i.e., the formation of the nitrosoperoxycarbonate, ONOOCO(2)(*)(-), was also investigated.  相似文献   

16.
Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to (1)H in water, and thus result in large DNP enhancement of (1)H NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the (14)N nuclei (or (15)N) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this effect is still significant at low radical concentrations where electron spin exchange is negligible. This implies that the only correct way to determine the coupling factor of nitroxide free radicals is to measure the maximum enhancement at different concentrations and extrapolate the results to infinite concentration. We verify our model with a series of DNP experimental studies on (1)H NMR signal enhancement of water by means of (14)N as well as (15)N isotope enriched nitroxide radicals.  相似文献   

17.
Electron spin resonance (ESR) spectroscopy can contribute to understanding both the kinetics and mechanism of radical polymerizations. A series of oligo/poly(meth)acrylates were prepared by atom transfer radical polymerization (ATRP) and purified to provide well defined radical precursors. Model radicals, with given chain lengths, were generated by reaction of the terminal halogens with an organotin compound and the radicals were observed by ESR spectroscopy. This combination of ESR with ATRPs ability to prepare well defined radical precursors provided significant new information on the properties of radicals in radical polymerizations. ESR spectra of the model radicals generated from tert-butyl methacrylate precursors, with various chain lengths, showed clear chain length dependent changes and a possibility of differentiating between the chain lengths of observed propagating radicals by ESR. The ESR spectrum of each dimeric, trimeric, tetrameric, and pentameric tert-butyl acrylate model radicals, observed at various temperatures, provided clear experimental evidence of a 1,5-hydrogen shift.  相似文献   

18.
Abstract

Recent electron spin resonance (ESR) experiments on phosphorus-centered radicals generated by ionizing radiation demonstrate that stereochemical aspects act strongly on the rate of radical formation and can be decisive in the selection between the possible resulting radical structures. This phenomenon was first established in a single crystal ESR study on radiogenic electron-capture phosphorus-centered radicals of the racemic and meso stereoisomers of 1.2-dimethyl-1,2-diphenyldiphosphine disulfide (1). The radiation process of the racemic form involves the formation of a symmetric species with a threeelectron bond in an overall low yield. The meso isomer, on the other hand, yields exclusively asymmetric radical configurations in which the unpaired electmn resides on one of the two phosphorus nuclei. The high intensity of the ESR spectra for the meso compound indicate a more efficient electron-capture process. A similar pronounced difference in radiosensitivity was observed for the Rp (1 and Sp (2) isomers of (4S,5R)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-Oxazaphospholidine 2-sulfide. Upon X irradiation, 1 readily results in an electron-capture phosphorus centered radical, whereas the concurrent process in 2 is almost completely absent. Since the geometric parameters of the atoms directly linked to phosphorus are very much alike for 1 and 2 il can be concluded that the efficiency of electron-capture at phosphorus strongly depends on the relative configuration of the distant chiral centers at C4 and C5.  相似文献   

19.
The spin trap agent, 2,6-di-chloronitrosobenzene (DCNB), which is decomposed into a nitrogen monoxide and a chlorinated phenyl radical on slight warming, was known to act as a radical generator through hydrogen abstraction by the chlorinated phenyl radical from an adjacent molecule. An ESR spectrum was observed at room temperature from a poly(methyl methacrylate) (PMMA)-benzene solution after the addition of DCNB followed by a warming to ca 30°C. The radical concentration increased with time. The spectrum was assigned to the spin adducts of PMMA radicals generated and trapped by DCNB. Analyses of the spectra observed from normal PMMA and partially deuterated PMMA's indicated that the majority of the PMMA radicals were the chain-scission species
and a minority were
. It was concluded that the main-chain scissions in PMMA were caused by the radicals (D), which had been primarily produced by the chlorinated phenyl radicals. These ESR data are supported by the fact that a decrease in molecular weight of PMMA was observed after addition of DCNB, and further reinforced by the fact that a molecular weight estimated from the number of the scission radicals agreed fairly well with the measured molecular weight. Similar results were obtained when both tri-chlorinated nitrosobenzene and tetra-chlorinated nitrosobenzene were used instead of DCNB.  相似文献   

20.
The electron spin resonance (ESR) spectra of polymer radicals found to be trapped in polytetrafluoroethylene (PTFE) polymerized with radical initiators were comparatively examined under various conditions and assigned. They are identified as the primary (propagating) radicals RCF2CF2·, which are transformed to primary peroxy radicals RCF2CF2OO· in the atmosphere. Studies of the rates of polymerization and postpolymerization and ESR measurements indicate that the radical content steadily increases during polymerization. The results are discussed in connection with the mechanism of polymerization of tetrafluoroethylene (TFE) and the unusual thermal stability of these radicals in PTFE prepared with initiator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号