首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.  相似文献   

2.
Low cost adsorption technology offers high potential to clean up laundry rinsing water. From an earlier selection of adsorbents (Schouten et al. 2007), layered double hydroxide (LDH) proved to be an interesting material for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS) which is the main contaminant in rinsing water. The main research question was to identify the effect of process parameters of the LDH synthesis on the stability of the LDH structure and the adsorption capacity of LAS. LDH was synthesized with the co-precipitation method of Reichle (1986); a solution of M2+(NO3)2 and M3+(NO3)3 and a second solution of NaOH and Na2CO3 were pumped in a beaker and mixed. The precipitate that was formed was allowed to age and was subsequently washed, dried and calcined. The process parameters that were investigated are the concentration of the initial solutions, M2+/M3+ ratio and type of cations. The crystallinity can be improved by decreasing the concentration of the initial solutions; this also decreases the leaching of M3+ from the brucite-like structure into the water. The highest adsorption capacity is obtained for Mg2+/Al3+ with a ratio 1 and 2 because of the higher charge density compared to ratio 3. Storing the LDH samples in water resulted in a reduction of adsorption capacity and a decrease in surface area and pore volume. Therefore, LDH is not applicable in a small device for long term use in aqueous surroundings. The adsorption capacity can be maintained during storage in a dry N2 atmosphere.  相似文献   

3.
MgAlCO3 type layered double hydroxides (LDHs) with Mg/Al ratios ranging from 2 to 5 were synthesized by coprecipitation. Composites with sodium oleate/LDH were prepared by ion exchange and reconstruction of the LDH in sodium oleate solution. The amount of sodium oleate in the composites prepared by this reconstruction method was higher than that in samples prepared by the ion-exchange method. The basal spacings of the LDHs increased to 3.9 and 1.8 nm after synthesis of the composites, these spacings being in good agreement with models based on the assumption that the oleate ions are intercalated as bilayer and/or micelle structures, and as monolayers in the LDH interlayers, respectively. The number of sorbed oleate ions was higher than calculated from the anion-exchange capacities of the LDHs in most of the samples, increasing as the Mg/Al ratios of the LDHs were increased from 2 to 5. These results suggest that the oleate ions are present not only in the interlayers but also on the surfaces of the LDH particles. The acid-resistant properties of the composites were found to be much higher than for the pure LDHs. It is thus confirmed that the surfaces of the LDH particles in the composites are mostly covered with sorbed oleate ions and that the composites are good candidates as drug delivery materials.  相似文献   

4.
Intercalations of mercaptocarboxylic acid and dithiodicarboxylic acid in Mg-Al layered double hydroxide and their adsorption properties for heavy metal ions were examined. During the intercalation of mercaptocarboxylic acids, mercapto group was oxidized, and the corresponding dithiodicarboxylic acids were intercalated in the interlayer space of Mg-Al layered double hydroxide. The intercalation compounds adsorbed mercury and silver ions effectively, whereas there was no adsorption of copper ion practically.  相似文献   

5.
Hollow nanoshells of layered double hydroxide (LDH) have been fabricated using exfoliated LDH nanosheets as a shell building block and polystyrene beads as a sacrificial template.  相似文献   

6.
Magnetic films based on CoFe LDH nanoplatelets and porphyrin anions were fabricated by the layer-by-layer assembly technique with an assistance of an external magnetic field, which show enhanced electrochemical behavior and magnetic anisotropy.  相似文献   

7.
The synthesis, chemistry, local structure and electrochemical properties of vanadium oxide xerogels and aerogels have much in common. The one difference in their respective synthesis routes, the means by which solvent is removed, has a significant influence on the resulting morphology. The high surface area, nanodimensional solid phase, short diffusion paths and interconnected mesoporosity of the aerogels exert a profound effect on their electrochemical properties. Our studies with V2O5 aerogels show that these materials offer the promise of achieving both high energy density and high power density because of a pseudocapacitive charge storage mechanism which develops.  相似文献   

8.
Changes in chemical properties of nanoscale particles include quantum size effect, changes in the cell parameters and lattice symmetry, and surface and interface effects. In the case of layered double hydroxides (LDHs), surface and interface effects dominate for nanoparticles of MgAl LDHs. Using TEM micrographs of nanoparticle-sized LDHs, we have found that the increased number of surface atoms relative to the internal atoms increases the surface-to-surface interparticle attractions. As a result, nanosize LDH particles are able to form continuous oriented films that adhere well to a polar substrate.  相似文献   

9.
Layered double hydroxides (LDHs) are new nanofillers which exhibit improved thermal and flammability properties in various kinds of polymer matrices. These materials have certain advantages over conventional metal hydroxides and also layered silicates so far as the flame retardancy is concerned. In this article, flammability and thermal properties of the nanocomposite based on low density polyethylene (LDPE) and Mg-Al based layered double hydroxide (Mg-Al LDH) are reported in detail. The nanocomposites containing different LDH concentrations were prepared by melt-compounding using a tightly intermeshing co-rotating twin-screw extruder. The morphological analysis reveals an exfoliated/intercalated type LDH particle morphology in these nanocomposites. The thermogravimetric analysis (TGA) shows that even a small amount of LDH improves the thermal stability and onset decomposition temperature in comparison with the unfilled LDPE. The heat release rate (HRR) and its maximum (PHRR) during cone-calorimeter investigation are found to be reduced significantly with increasing LDH concentration. The nanocomposites not only exhibit reduced total heat released (measure of propensity to produce long duration fire), but also lower tendency to fast fire growth (measured by the ratio of PHRR and time of ignition). The limited oxygen index (LOI) and the dripping behavior are also improved with increasing LDH concentration.  相似文献   

10.
A Zn/Al layered double hydroxide with molar ratio of 3 was prepared by coprecipitation in alkaline pH and used as a matrix to intercalate the ionic complex diaquadioxalatooxoniobate(V) (DDON), derived from NH4[NbO(C2O4)2(H2O)2]2H2O. In a similar way, the layered zinc hydroxide nitrate, Zn5(OH)8(NO3)22H2O, was synthesized, preexpanded with azelate ions (OOC(CH2)7COO), and then intercalated with the niobium complex. For both layered matrices, the results from X-ray powder diffractometry, Fourier transform infrared spectroscopy, and thermal analysis (TG/s-DTA) indicate the presence of the oxalate ion. In addition, results from X-ray photoelectron and Raman spectroscopy indicate the presence of the niobium center bonded to oxygen atoms. Finally, diffuse reflectance UV–vis spectroscopy suggests that the niobium centers are coordinated to oxalate ions. This is the first report of the intercalation of niobium into a layered matrix.  相似文献   

11.
Surface-charging behavior of Zn-Cr layered double hydroxide   总被引:1,自引:0,他引:1  
A Zn-Cr layered double hydroxide (LDH) having the formula Zn(2)Cr(OH)(6)Cl(0.7)(CO(3))(0.15)2.1H(2)O was synthesized and characterized by powder X-ray diffraction, infrared spectroscopy, acid-base potentiometric titration, mass titration, electrophoretic mobility, and modeling of the electrical double layer. Adsorption of alizarin was also performed in order to show some particular features of the HDL. Net hydroxyl adsorption, which increases with increasing pH and decreasing supporting electrolyte concentration, takes place above pH 5. The electrophoretic mobility of the particles was always positive and it decreased when the pH was higher than 9. An isoelectric point of 12 could be estimated by extrapolating the data. The modified MUSIC model was used to estimate deprotonation constants of surface groups and different adsorption models were compared. Good fit of hydroxyl adsorption and electrophoresis could be achieved by considering both OH(-)/Cl(-) exchange at structural sites and proton desorption from surface hydroxyl groups. The modeling, in agreement with alizarin adsorption, indicates that most of the structural positive charge of the LDH is screened at the surface by exchanged anions and negatively charged surface groups. It also suggests that only structural charge sites initially neutralized by chloride ions are active for anion exchange. The remaining sites are blocked by carbonate and do not participate in the exchange.  相似文献   

12.
《中国化学快报》2020,31(6):1511-1515
Mg~(2+) in MgAl-layered double hydroxides nanoparticles was substituted with different divalent transition metal ions(MAl-LDHs,M:Mg~(2+),Cu~(2+),Ni~(2+),Co~(2+),and Mn~(2+)) via a facile method to be used as antibacterial agents.The phase structural and morphological characterizations of MAl-LDHs were investigated by XRD,FTIR spectroscopy and TEM.The results have shown that all of MAl-LDHs had typical layered structures except MnAl-LDH which contained Mn304 phases.Particular morphology of MnAl-LDH with ellipsoids,spherical and rod-like structure and CuAl-LDH with rod-like shape existed.IC_(50)(the concentrations providing 50% antibacterial activity) values of CuAl-LDH,NiAl-LDH,CoAl-LDH,and MnAlLDH in broth dilution tests were ~800-1500 μg/mL.Dosages of CuAl-LDH,CoAl-LDH,and MnAl-LDH with10 mm inhibition zone in disk diffusion tests were ~150-300 μg/disk.Antibacterial mechanism of MAl-LDHs may be attributed to the synergistic factors including effected surroundings,surface interactions,morphology of particles,ROS and metal ions.The results indicate a facile method to synthesis LDHs based effective antibacterial agents with the potential application in the area of water treatment and antibacterial coating.  相似文献   

13.
不同金属离子层状双氢氧化物制备及表征   总被引:4,自引:0,他引:4  
本文采用恒定pH值共沉淀法制备六种层板金属离子不同的层状双氢氧化物(LDH).通过傅立叶变换红外光谱仪(FT-IR)、X-射线衍射仪(XRD)和扫描电子显微镜(SEM)对LDH进行了表征,并利用热重分析(TG)研究了LDH的热分解行为.研究表明,不同金属离子对LDH的层间距、晶粒尺寸等参数有一定影响,团聚程度也有较大的差异.  相似文献   

14.
This article reports a novel method to tune the photoluminance properties of ammonium 1-anilinonaphthalene-8-sulfonate (ANS) in a 2D matrix of layered double hydroxide (LDH) by changing the interlayer microenvironment. ANS and a series of surfactants with different alkyl chain lengths (pentanesulphonate (PES), hexanesulphonate (HES), heptanesulphonate (HPS), decanesulphonate (DES), and dodecylsulphonate (DDS)) were respectively cointercalated into the galleries of ZnAl-LDH by the anion exchange method. Thin films of ANS/surfactant-LDHs obtained by the solvent evaporation method possess good c orientation as revealed by XRD and SEM. It was found that the ANS/HPS-LDH film showed the maximum fluorescence efficiency and the longest intensity-average lifetime among these ANS/surfactant-LDH composites owing to the "size-matching" rule between the organic dye and surfactant. Moreover, the fluorescence properties can be tuned by changing the relative molar ratio of ANS/HPS, and the film containing 20% ANS (molar percentage, expressed as ANS(20%)/HPS-LDH) exhibits the maximum fluorescence efficiency, the longest average lifetime, and significantly enhanced photo and thermal stability. In addition, the composite films show fluorescence anisotropy, attributed to the preferential orientation of ANS in the LDH gallery. Therefore, this work demonstrates a feasible approach to tuning the photoluminescence properties of a dye confined in an inorganic 2D matrix via changing the interlayer microenvironment, which may be considered to be a good candidate for solid photoluminescence materials, nonlinear optics, and polarized luminescence materials.  相似文献   

15.
In this study, we have demonstrated the synthesis and delamination of a rarely studied NiGa layered double hydroxide (LDH) system. Hydrothermal treatment under agitation conditions at 200 °C for 4 h resulted in the formation of highly crystalline NiGa LDHs in a shorter time than those synthesized without agitation. The LDH was delaminated into the individual nanosheets in formamide. The most significant finding in this study is the electrochemical behavior of interlayer ferricyanide anions intercalated with the layer-by-layer (LBL) assembly method. The morphology of LBL film with one layer is also monitored with atomic force microscopy. The cyclic voltammogram is similar to potassium metal hexacyanoferrate systems with its unique two-peak wave. Raman spectrum of the film revealed that the metal center of the interlayer cyano complex is in interaction with the Ni2+ of the host layer. It was concluded that the two-peak cyclic voltammogram of the film is a result of two different forms of the hexacyanoferrate in the interlayer.  相似文献   

16.
A liquid paraffin-water emulsion was investigated using layered double hydroxide (LDH) particles and sodium dodecyl sulfate (SDS) as emulsifiers. Both emulsifiers are well-known to stabilize oil-in-water (o/w) emulsions. Surprisingly, a double phase inversion of the emulsion containing LDH particles is induced by the adsorption of SDS. At a constant LDH concentration, the emulsion is o/w type when SDS concentrations are low. At intermediate SDS concentrations, the first emulsion inversion from o/w to w/o occurs, which is attributed to the enhanced hydrophobicity of LDH particles caused by the desorption of the second layer of surfactant, leaving a densely packed SDS monolayer on the LDH exterior surfaces. The second inversion from water-in-oil (w/o) to o/w occurs at higher SDS concentrations, which may be due to the competitive adsorption at the oil/water interfaces between the LDH particles modified by the SDS bilayers and the free SDS molecules in the bulk solution, but the free SDS molecules dominate and determine the emulsion type. Laser-induced fluorescent confocal micrographs clearly confirm the adsorption of LDH particles on the surfaces of the initial o/w and intermediate w/o emulsion droplets, whereas no LDH particles were adsorbed on the final o/w emulsion droplet surfaces. Also, transmission electron microscopy (TEM) observations indicate that the shape of the final o/w emulsions is similar to that of the monomeric SDS-stabilized emulsion but different from that of the initial o/w emulsions. The adsorption behavior of SDS on LDH particles in water was investigated to offer an explanation for the emulsion double phase inversion. The zeta potential results show that the particles will flocculate first and then redisperse following surfactant addition. Also, X-ray diffraction (XRD) measurements indicate that SDS adsorption on the LDH interior surfaces will be complete at intermediate concentrations.  相似文献   

17.
殷鹏刚 《高分子科学》2017,35(5):631-640
Due to the various needs in the current applications,multifunctional composite materials with high strength and high toughness were highly desired now.Many scholars dedicated their time to find a simple,green and fast method for the preparation of multi-functional materials.In this study,inspired by the hierarchical "brick-and-mortar" structure and excellent mechanical performance of nacre,a fast green vacuum-filtration method was used to fabricate strong and multifunctional polyglutamic acid/layered double hydroxide (PGA/LDH) films mimicking nacre.The experimental results confirm that the artificial nacre has hierarchical "brick-and-mortar" structure.It exhibits excellent strength (93.5 MPa) and flexibility (easily bendable fold),combining with outstanding properties of UV-blocking and translucence properties.This work provides a way of fabricating multifunctional organic-inorganic hybrid films,which has potential applications in the areas of optical,transportation and construction fields.  相似文献   

18.
Layered double hydroxides (LDHs) and many of the related hydrotalcite-like minerals have been well studied from the chemical and structural point of view; however, their luminescence properties have been scarcely studied. We herein report on the thermoluminescence (TL) behaviour of a natural LDH (Mg6Cr2CO3(OH)16·4H2O), previously characterized by X-ray fluorescence, X-ray energy-dispersive spectrometry, electron probe microanalysis, thermogravimetry and differential thermal analysis, that exhibited a very complex green-IR spectral emission. The broad waveband peaked at ~?640 nm can be mainly linked to the 4T1?→?6A1 (at 570 nm), 4A2g?→?2Eg (~?685 nm), 4T1?→?6A1 (~?700 nm), and 1T2g?→?3A2g (green) and 1T2g?→?3T2g (red) transitions due, respectively, to the presence of Mn2+, Cr3+, Fe2+ and Ni2+. The weak red-TL emission can likely be attributed to the quenching effect due to Fe (~?8–11%) ions substituting for Mg2+.  相似文献   

19.
We report the first controlled synthesis of a layered double hydroxide (LDH) in a water-in-oil reverse microemulsion system. This synthesis of Mg2Al-LDHs was carried out in the reverse microemulsion of NaDDS (sodium dodecyl sulfate)-water-isooctane with water/surfactant molar ratio = 24. This enables us to obtain nanometer sized LDH platelets typically with a 40-50 nm diameter and 10 nm thickness. Further modification of the reverse microemulsion using triblock copolymers during crystallization allowed us to express different growth orientations of the LDH structure. These data show that the aspect ratio of LDHs can be flexibly adjusted over a wide range.  相似文献   

20.
基于层状前驱体制备活性位高分散催化材料   总被引:2,自引:0,他引:2  
安哲  何静  段雪 《催化学报》2013,(1):225-234
综述了近年来以层状双金属氢氧化物(LDHs)为前躯体制备高分散催化剂的研究进展,基于LDHs层板金属阳离子以原子水平高度分散及层间阴离子以一定方式有序排布的结构特点,以LDHs材料作为单一前驱体,经层板剥离、晶格限域、插层组装及阵列化等途径制备催化活性位高度分散的多相催化材料具有显著的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号