首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the effect of mesopore and particle size distributions on the kinetics of dissolution of powdered Pentelic marble was investigated. Powders obtained by grinding marble slabs in an agate mortar with a pestle (1-3.5 min) were found to be non-porous by nitrogen absorption measurements. These powders, upon dissolution under conditions of constant under-saturation, 25 degrees C, pH 8.25, showed that the kinetics in the absence of mesopores depended on the number of active sites on the exposed surface. Thus, powders consisting of smaller particles, having higher specific surface areas, yielded higher rates of dissolution. Powders, however, which were prepared by grinding marble slabs in a cylinder mill for time periods between 2.0 and 30.0 min, and which exhibited considerable mesoporosity, showed the opposite trend. The rates of dissolution measured for these powders in under-saturated solutions increased with increasing mean particle size and decreased with increasing specific surface area. This finding suggested that the presence of mesopores resulted in lower dissolution rates even though the exposed total surface area was larger. Furthermore, the larger the number of mesopores in a powder sample the slower the corresponding dissolution rates in under-saturated solutions.  相似文献   

2.
This paper investigates the influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) from the dissolution characteristics, paste strength, hydration heat and reaction degree. Further, the hydration and hardening properties of blended cement containing different ground CFA are also compared and analyzed from hydration heat, non-evaporable water content, hydration products, pore structure, setting time and mortar strength. The results show that the ground CFA has a relatively higher dissolution rate of Al2O3 and SiO2 under the alkaline environment compared with that of raw CFA, and the pozzolanic reaction activity of ground CFA is gradually improved with the increase of grinding time. At the grinding time of 60 min, the pozzolanic reaction degree of CFA paste is improved from 6.32% (raw CFA) to 13.71% at 7 days and from 13.65 to 28.44% at 28 days, respectively. The relationships of pozzolanic reaction degree and grinding time of CFA also conform to a quadratic function. For ground CFA after a long-time grinding such as 60 min, the hydration heat and non-evaporable water content of blended cement containing CFA are significantly improved. Owing to relatively smaller particle size and higher activity of ground CFA, the blended cement paste has more hydration products, narrower pore size distribution and lower porosity. For macroscopic properties, with increase in grinding time of CFA, the setting time and strength of blended cement are gradually shortened and improved, respectively.  相似文献   

3.
A novel system has been developed to continuously monitor granule growth in a high shear granulation. The system consists of an image processing system and a particle image probe comprising a CCD camera, lighting unit and air purge system. Segregation during powder mixing was investigated experimentally and the optimal positioning of the probe was determined. High shear granulation was conducted using pharmaceutical powders, and granule size and product's yield of various size ranges were continuously measured by the developed system. Sieve analysis of the granulated products sampled out during the granulation was simultaneously conducted, and the obtained data was compared with that by the on-line image processing system. An extremely close relationship could be found between both data, proving that the developed system could monitor the granule growth accurately and continuously throughout the granulation. An on-off control system was developed to control the granulation process, and the performance of the system was confirmed.  相似文献   

4.
This contribution is focused on precise determination of particle size distribution in polymer blends with complex morphology by means of our new program called MDISTR. Standard determination of the particle size distribution is usually achieved by measurement of particle sizes in (a single set of) electron micrographs. We show why this method fails for two frequent cases: (i) blends with very broad particle size distribution and (ii) blends that are composed of domains with different particle sizes. On real-life examples, we demonstrate that program MDISTR yields accurate particle size distributions in both the above-mentioned cases, while the standard image analysis gives average particle sizes differing by >100 % from the correct result. We describe MDISTR calculations which are based on a linear combination of standard particle size distributions from two (or more) sets of micrographs with different magnifications, different locations within the sample and precisely defined statistical weights.  相似文献   

5.
Fourier transform infrared (FTIR) spectroscopy using attenuated total reflection (ATR) is commonly used for the examination of bone. During sample preparation bone is commonly ground, changing the particle size distribution. Although previous studies have examined changes in crystallinity caused by the intensity of grinding using FTIR, the effect of sample preparation (i.e. particle size and bone tissue type) on the FTIR data is still unknown.This study reports on the bone powder particle size effects on mid-IR spectra and within sample variation (i.e. periosteal, mesosteal, trabecular) using FTIR-ATR. Twenty-four archaeological human and faunal bone samples (5 heated and 19 unheated) of different chronological age (Neolithic to post-Medieval) and origin (Belgium, Britain, Denmark, Greece) were ground using either (1) a ball-mill grinder, or (2) an agate pestle and mortar, and split into grain fractions (>500 μm, 250–500 μm, 125–250 μm, 63–125 μm, and 20–63 μm).Bone powder particle size has a strong but predictable effect on the infrared splitting factor (IRSF), carbonate/phosphate (C/P) ratio, and amide/phosphate (Am/P) values. The absorbance and positions of the main peaks, the 2nd derivative components of the phosphate and carbonate bands, as well as the full width at half maximum (FWHM) of the 1010 cm−1 phosphate peak are particle size dependent. This is likely to be because of the impact of the particle size on the short- and long-range crystal order, as well as the contact between the sample and the prism, and hence the penetration depth of the IR light. Variations can be also observed between periosteal, cortical and trabecular areas of bone. We therefore propose a standard preparation method for bone powder for FTIR-ATR analysis that significantly improves accuracy, consistency, reliability, replicability and comparability of the data, enabling systematic evaluation of bone in archaeological, anthropological, paleontological, forensic and biomedical studies.  相似文献   

6.
An expeditious, one-pot and room temperature protocol is reported for the synthesis of 2-chloroimidazoles from imidazole N-oxide. Simple mixing of the imidazole N-oxide, derived easily from diacetyl monoxime via three-component reaction, with oxalyl chloride in an agate mortar and pestle in open air affords the desired products in excellent yields. In view of versatile applications of 2-chloroimidazoles and only two other methods are known in the literatures that suffer from certain drawbacks, the present protocol could be of importance.  相似文献   

7.
This study investigated the effect of chitosan particle sizes on the properties of carboxymethyl chitosan (CMCh) powders and films. Chitosan powders with different particle sizes (75, 125, 250, 450 and 850 µm) were used to synthesize the CMCh powders. The yield, degree of substitution (DS), and water solubility of the CMCh powders were then determined. The CMCh films prepared with CMCh based on chitosan with different particle sizes were fabricated by a solution casting technique. The water solubility, mechanical properties, and water vapor transmission rate (WVTR) of the CMCh films were measured. As the chitosan particle size decreased, the yield, DS, and water solubility of the synthesized CMCh powders increased. The increase in water solubility was due to an increase in the polarity of the CMCh powder, from a higher conversion of chitosan into CMCh. In addition, the higher conversion of chitosan was also related to a higher surface area in the substitution reaction provided by chitosan powder with a smaller particle size. As the particle size of chitosan decreased, the tensile strength, elongation at break, and WVTR of the CMCh films increased. This study demonstrated that a greater improvement in water solubility of the CMCh powders and films can be achieved by using chitosan powder with a smaller size.  相似文献   

8.
Degummed silk filament was pulverized with a home‐made machine to obtain silk fibroin (SF) powder, and the structure, morphology, and particle size of the SF powder were investigated. The individual spherical particles and aggregates with different morphology of silk fibroin coexisted in water. A waterborne polyurethane (WPU) aqueous dispersion was blended with the SF powder to prepare novel blended materials with improved physical properties. The average particle size and zeta potential of the WPU/SF aqueous dispersions were characterized. The result showed that the WPU/SF dispersion with higher SF content exhibited a less negative zeta potential and a larger average particle size. Furthermore, the effect of SF content on the morphology, miscibility, and mechanical properties of the resulting blended films was studied by scanning electron microscopy, wide‐angle X‐ray diffraction, dynamic mechanical thermal analysis, and tensile testing. The films showed an improved Young's modulus and tensile strength from 0.3 to 33.8 MPa, and 0.6 to 5.2 MPa, respectively, with the increasing of SF up to a content of 26 wt %. The negative charges in the periphery and the small particle size made a good effort on dispersing SF powder into the WPU matrix as small aggregates, and the SF powder led to the efficient strengthening of WPU materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 940–950, 2010  相似文献   

9.
研究了聚氯乙烯(PVC)与固相法氯化聚乙烯(CPE)的相容性与氯含量、共混方式以及CPE链结构的关系。动态力学性能表明PVC/CPE为部分相容体系,CPE中类似PVC的链段与PVC形成相间过渡层,共混方式影响共混体系的相容程度。透射电镜结果表明CPE呈连续网络结构分布于PVC粒子表面。共混条件一定时,共混物的抗张强度随相容性的改善而增加。  相似文献   

10.
A green and highly regioselective approach for the synthesis of β-amino alcohols (with yields from 15 to 98%) via the aminolysis of epoxides by varied amines using LiBr under aqueous mortar–pestle grinding conditions has been described. Use of a mild catalyst, ordinary grinding, time economy, cost effectiveness, complete regioselectivity, and a very good to excellent yield of desired products makes this process an attractive route for the synthesis of biologically significant pharmacophores. Furthermore, the developed protocol has been successfully extended to the synthesis of novel series of β-amino alcohols (3rad) bearing benzofused 1,2,3-triazole heterocycle with complete regioselectivity. The structure of the synthesized molecules has been characterized by spectroscopic techniques such as 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectroscopy/elemental analysis.  相似文献   

11.
Lee B  Lee KH  Cho J  Nam W  Hur NH 《Organic letters》2011,13(24):6386-6389
Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.  相似文献   

12.
以气流床粉煤气化工业装置不同时期的两组进料煤粉为研究对象,在实验室按粒径对两组煤粉进行了筛分分组,对分组后子煤粉进行了煤质、煤灰特性及反应活性分析,研究了原煤可磨性差异对混配磨制后煤粉均匀程度的影响。结果表明,原煤可磨性对混煤煤粉的颗粒粒径分布及其均匀性均具有影响。混配磨制煤粉的粒径主要取决于原煤中可磨性指数较小的原煤,此原煤可磨性指数越小,煤粉颗粒粒径越大;可磨性相近的原煤混配制得的煤粉混合较均匀,可磨性差异较大的原煤混配煤粉混合不均,煤粉发生偏析,使得大颗粒煤粉中含有过多的难磨煤,导致煤粉的反应性能变差。  相似文献   

13.
Miscibility of cellulose acetate with vinyl polymers   总被引:2,自引:0,他引:2  
Binary blend films of cellulose acetate (CA) with flexible syntheticpolymers including poly(vinyl acetate) (PVAc), poly(N-vinyl pyrrolidone) (PVP),and poly(N-vinyl pyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] were preparedfrommixed polymer solutions by solvent evaporation. Thermal analysis by DSC showedthat CA of any degree of substitution (DS) was not miscible with PVAc, but CAwith DS less than 2.8 was miscible with PVP to form homogeneous blends. Thestate of mixing in CA/P(VP-co-VAc) blends was affected not only by the DS of CAbut also by the VP/VAc copolymer composition. As far as CAs of DS<2.8 andP(VP-co-VAc)s with VP contents more than ca. 25 mol% were used,theCA/copolymer blends mostly showed a miscible behaviour irrespective of themixing ratio. FT-IR measurements for the miscible blends of CA/PVP andCA/P(VP-co-VAc) revealed the presence of hydrogen-bonding interactions betweenresidual hydroxyls of CA and carbonyls of N-vinyl pyrrolidone units, which maybe assumed to largely contribute to the good miscibility.  相似文献   

14.
 A method for characterizing the particle size and size distribution of multi-sized polymer lattices was developed by combining quasielastic light scattering (QELS) with a centrifuge. Lattices were first fractionated by centrifugation and the different populations of particles were separated in successive steps. The size of these particles was measured by QELS, and the mass fraction of the particles was determined gravimetrically. The particle size and size distribution of several blends of monodisperse lattices and two industrial multi-sized lattices have been measured by this method. The results show that the particle sizes obtained using this method are in good agreement with the expected particle diameters, and that the relative amounts of the different groups of particles in the blends can be accurately determined. The efficiency of centrifuge-QELS was also confirmed by comparison with other techniques such as transmission electron microscopy (TEM), QELS, field-flow fractionation (FFF) and capillary hydrodynamic fractionation (CHDF). However, this method is not suited for the analysis of continuous, broad distributions or mixtures with a high number of different populations. It is better suited for distributions with a small number of families of particles, and then can be used for preparative propose on a laboratory scale. Received: 9 October 1996 Accepted: 7 July 1997  相似文献   

15.
An efficient method for the generation of cellulose di- and tri-acetate nano-structures is obtained through testing ferric chloride hydrate (FeCl3·6H2O) as a valuable Lewis acid catalyst with acetic anhydride under microwave irradiation. Our target was to evaluate the effects of the reaction conditions on the products' properties such as surface area and particle size distribution. It was found that changes in the degree of substitution (DS), the surface area, the degree of polymerization and the particle size distribution of the products correlated with reaction conditions. Cellulose tri-acetate nanofibers with DS of 2.94 with 98.03% yield was prepared using 200 mg of FeCl3·6H2O, 25 ml of Ac2O and 4 minutes of microwave irradiation. Also, cellulose di-acetate nanofibers were prepared with DS values ranged between 2.37 and 2.72 with yield ranged between 78.92 and 90.58%. The percentage of acetyl groups (Ac%) as well as the BET specific surface area, total pore volume, mean pore diameter, mono layer volume and the mean particle size of the products were determined. The maximum specific surface area obtained for the acetylated cellulose was about ten times larger than that measured for the commercial cotton cellulose and about six times larger than that of the commercial cellulose acetate. The lowest mean particle size (34.90 nm) was about eleven times smaller than the mean particle size of the commercial cellulose acetate (394 nm). The present work has proved that FeCl3·6H2O was a highly active catalyst for the esterification of cellulose with unexpected yields and for the formation of nanofibers with low molecular weight.  相似文献   

16.
通过饲喂牛的方式获得乳粉中黄曲霉毒素M1阳性乳品,经冷冻干燥、混匀、包装、分装、辐照灭菌制备了乳粉中黄曲霉毒素M1标准物质。6家实验室均采用液相色谱-同位素稀释质谱法对乳粉中黄曲霉毒素M1标准物质进行联合定值。分别采用F检验和t检验对标准物质进行均匀性、稳定性检验,结果表明该标准物质均匀性与稳定性良好,均符合标准物质定值技术要求。对定值结果进行不确定度评定,乳粉中黄曲霉毒素M1残留标准物质定值结果为(2.45±0.41)μg/kg,k=2。该标准物质可用于乳品中黄曲霉毒素M1的日常质量控制及定量检测。  相似文献   

17.
Summary: Modified SBR was blended with dried PET bottle wastes in an internal mixer. During the process mechanical and morphological properties were studied. When PET bottle wastes were blended with unmodified SBR, the final blend had a rough morphology and low impact strength. In contrary, blending of PET with modified SBR lead to smooth and fine morphology. Utilizing grafted SBR in PET blends creates an enormous difference in particle size and morphology, which is a result of powerful interactions and effective chemical bonding between the components of the blend. The final product had high impact strength in comparison with PET and unmodified SBR blend. These results are mainly related to formation in situ of PET/SBR graft copolymer in interface, which is produced by chemical reaction among active maleic anhydride groups and active PET groups.  相似文献   

18.
采用溶液共混法制备了一系列不同组成的聚氨酯/丝素共混膜.利用红外光谱和广角X-射线衍射表征聚氨酯/丝素共混膜的结构;扫描电镜观察共混膜的断面;紫外-可见光谱测定共混膜的透光性;运用拉伸实验研究不同配比聚氨酯/丝素共混膜的力学性能.结果表明聚氨酯和丝素蛋白分子间存在较强的氢键相互作用.当丝素含量低于3 wt%时,试膜的断面较光滑,丝素蛋白分子进入聚氨酯网状结构中,破坏了聚氨酯分子内硬段和软段间的氢键作用.随着丝素含量进一步增大,丝素小颗粒均匀分散在聚氨酯基体中,二者之间具有较好的相容性.本实验所采用的制膜条件有利于促进丝素蛋白大分子的结晶.丝素蛋白对聚氨酯具有良好的增强效果,当丝素含量从0到5.6 wt%变化时,共混试片的断裂强度由0.56 MPa增大到4.60 MPa,杨氏模量由0.14 MPa增大到1.71 MPa,断裂伸长率从1065%下降到988%.丝素蛋白增强聚氨酯共混膜的强度显著增加,但弹性基本保持不变.  相似文献   

19.
应用金属通腔电极研究Cr2O3粉末于熔盐中的电化学行为,验证了900℃下Cr2O3粉末在含镁量<0.005%氯化钙熔盐中的分步还原机理,估算其电化学还原动力学参数;并由扫描电镜观察产物形貌,分析电解电位和时间对金属颗粒尺寸的影响.  相似文献   

20.
Evolution and fractal character of the phase morphology of high impact polystyrene/poly(cis-butadiene) rubber (HIPS/PcBR) blends during melting and mixing were investigated using scanning electron microscopy (SEM). The characteristic length L was defined as the size of particles of the dispersed phase in blends. Different fractal dimensions, Df and Din, were introduced to study the distribution width of phase dimensions in the dimensionless region and the uniformity of the spatial distribution of particles, respectively. The results showed that the average characteristic length Lm and Df increase as the volume fraction of the dispersed phase increases, when the volume fraction of the dispersed phase is lower than 50%. In other words, the size of particles increases and their distribution in the dimensionless region becomes more uniform. Meanwhile, the uniformity of the spatial distribution becomes more perfect as the volume fraction increases. At a certain composition, Lm decreases in the initial stage of the mixing and levels off in the late stage. In the initial stage, Df becomes large rapidly with the process of blending, which means that the distribution of L in the dimensionless region becomes more uniform. Meanwhile, the spatial distribution tends to be ideal rapidly in the early stage and fluctuates in a definite range in the late stage of the mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号