首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotube based nanocomposite membranes have been fabricated through solution casting by embedding multi-walled carbon nanotubes (MWCNTs) within polyetherimide (PEI) polymer host matrix. In order to achieve fine dispersion of nanotubes and facilitate strong interfacial adhesion with the polymer matrix, the nanotubes were first treated with surfactants of different charges, namely anionic sodium dodecyl chloride, cationic cetyl trimethyl ammonium chloride and non-ionic Triton X100, prior to the dispersion in the PEI dope solution. Dispersion of MWCNTs in N-methyl-2-pyrrolidone solvent showed that the agglomeration and entanglement of the nanotubes were greatly reduced upon the addition of Triton X100. Scanning electron microscopy and atomic force microscopy examination has evidenced the compatibility of Triton X100 dispersed MWCNTs with the polymer matrix in which a promising dispersion and adhesion has been observed at the MWCNT-PEI interface. The increase in both thermal stability and mechanical strength of the resulting Triton X100 dispersed MWCNT/PEI nanocomposite indicated the improved interaction between MWCNTs and PEI. This study demonstrated the role of Triton X100 in facilitating the synergetic effects of MWCNTs and PEI where the resulting composite membrane is anticipated to have potential application in membrane based gas separation.  相似文献   

2.
Nitrogen-doped bamboo-shaped carbon nanotubes (N-BCNTs) and their non-doped conventional counterparts, multiwalled carbon nanotubes (MWCNTs) were compared as polymer reinforcing additives in polyvinyl chloride (PVC) matrix. The nanotubes were synthetized by catalytic chemical vapor deposition (CCVD) method. The purity of both nanotubes was measured by thermogravimetric analysis (TGA) and found to be >91%. Further analysis on the morphology and size of the carbon nanotubes (CNTs) were performed by transmission electron microscopy (TEM). The PVC powder was impregnated with CNTs in ethanol by using tip ultrasonicator. The dispersion media was evaporated, and the CNT/PVC powder was used to produce polymer fibers. The orientation of carbon nanotubes in the PVC matrix was characterized by scanning electron microscopy (SEM), and the presence of nanotubes were confirmed in case of all PVC samples. It can be observed on the SEM images that the nanotubes are fully covered with PVC. The tensile strength of the nanotube containing samples was tested and the N-BCNT/PVC composite was found to be better in this sense, thanks to the extraordinary structure of the nanotube. In case of the N-BCNT/PVC composite the measured young modulus was 39.7% higher, while the elongation at brake decreased by 33.6% compare to the MWCNT/PVC composite. These significant differences in the mechanical properties of the composites can be explained with the stronger interaction between N-BCNTs and PVC.  相似文献   

3.
A method for covalent functionalization of multiwalled carbon nanotubes (MWCNTs) was developed using the free radicals generated through Bergman cyclization of enediyne‐containing compounds. Four enediyne‐bearing Frechet type dendrimers were synthesized in good quantities and characterized. Then, the enediyne‐containing molecules were reacted with MWCNTs in N‐methyl‐2‐pyrrolidinone at 206 °C under nitrogen. The structure and morphology of the resulting products were characterized by thermogravimetric analysis, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy. The dendrimer‐functionalized MWCNTs showed good solubility/dispersibility in common organic solvents and polymer solutions. They were used in the formation of polymer composites through electrospinning with polycaprolactone. The results confirmed the surface functionalization of MWCNTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

5.
This research is aimed at characterizing the thermal, mechanical, and morphological properties of carbon nanotubes (CNTs) reinforced poly(amide-imide) (PAI) composites having thiazol and amino acid groups which were prepared by sonication-assisted solution compounding. To increase the compatibility between the PAI matrix and CNTs, carboxyl-functionalized multiwall CNTs (MWCNTs-COOH) were used in this study. The MWCNTs were dispersed homogeneously in the PAI matrix while the structure of the polymer and the MWCNTs structure are stable in the preparation process as revealed by transmission electron microscopy. MWCNT/PAI composite films have been prepared by casting a solution of precursor polymer containing MWCNTs into a thin film, and its tensile properties were examined. The thermal stability, Young’s modulus, and tensile strength of PAI were greatly improved by the incorporation of MWCNTs and their good dispersion. Composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis.  相似文献   

6.
采用正电子湮没寿命谱技术研究了尼龙6/碳纳米管纳米复合材料的自由体积特性。实验结果发现碳纳米管对纳米复合材料的自由体积孔洞尺寸影响甚微,而自由体积孔洞数目和相对自由体积分数均随碳纳米管含量的增加而明显减小。导致这种减小的原因可能来自两方面,其一是由于碳纳米管和基质聚合物间的相互作用限制了高分子链段运动;其二是碳纳米管填充增强了尼龙6基体结晶性能。此外,力学性能研究表明,碳纳米管在复合材料中较均匀的分散和较好的界面接触可以提高材料的力学强度,而自由体积分数的减小则使材料的韧性变差。  相似文献   

7.
Polypropylene random copolymer nanocomposites having 0.2–7.0 vol% multi-walled carbon nanotubes (MWCNTs) were prepared via melt processing. Transmission electron microscopy (TEM) was employed to determine the nano scale dispersion of carbon nanotubes. Linear viscoelastic behavior of these nanocomposites was investigated using parallel plate rheometry. Incorporation of carbon nanotubes in the polymer matrix resulted in higher complex viscosity (η*), storage (G′) and loss modulus (G″) as compared to neat polymer, especially in the low-frequency region, suggesting a change from liquid to solid-like behavior in the nanocomposites. By plotting storage modulus vs. carbon nanotube loading and fitting with a power law function, the rheological percolation threshold in these nanocomposites was observed at a loading of ∼0.27 vol% of MWCNTs. However, electrical percolation threshold was reported at ∼0.19 vol% of MWCNTs loading. The difference in the percolation thresholds is understood in terms of nanotube connectivity with nanotubes and polymer chain required for electrical conductivity and rheological percolation.  相似文献   

8.
Polyvinylidene difluoride (PVDF) solutions containing a very low concentration of single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) of similar surface chemistry, respectively, were electrospun, and the nanofibers formed were collected using a modified rotating disk collector. The polymorphic behavior and crystal orientation of the nanofibers were studied using wide-angle X-ray diffraction and infrared spectroscopy, while the nanotube alignment and interfacial interactions in the nanofibers were probed by transmission electron microscopy and Raman spectroscopy. It is shown that the interfacial interaction between the SWCNTs and PVDF and the extensional force experienced by the nanofibers in the electrospinning and collection processes can work synergistically to induce highly oriented beta-form crystallites extensively. In contrast, the MWCNTs could not be well aligned along the nanofiber axis, which leads to a lower degree of crystal orientation.  相似文献   

9.
In the present investigation, the preparation, characterization, and surface morphology of poly(amide‐imide) (PAI)/multi‐walled carbon nanotubes (MWCNTs) bionanocomposites (BNCs) were the main goals of the study. At first, an optically active PAI based on S‐valine as a biodegradable segment was synthesized. Then, carboxyl‐modified MWCNTs were functionalized with glucose (f‐MWCNT) as a biological active molecule in a green method to achieve a fine dispersion of f‐MWCNT bundles in the PAI matrix. The existence of S‐valine in the PAI matrix and functionalized MWCNT with glucose resulted in a series of potentially biodegradable nanocomposites. The obtained BNCs were characterized by various techniques. Field emission scanning and transmission electron microscopy micrographs of the composites showed a fine dispersion of f‐MWCNTs in the polymer matrix because of hydrogen bonding and π–π stacking interaction between f‐MWCNTs and polymer functional groups and aromatic moieties. Adding f‐MWCNTs into polymer matrix significantly improved the thermal stability of BNCs because of the increased interfacial interaction between the PAI matrix and f‐MWCNTs and also good dispersion of f‐MWCNT in the polymer matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this study a series of melt mixed multi-walled carbon nanotube (MWNT)/Polyethylene composites with several carbon nanotube (CNTs) concentrations were investigated. A good dispersion of the nanotubes in the matrix was seen using scanning electron microscopy. Melt rheological measurements in dynamic mode were used to estimate the percolation state of the CNTs within the polymer and to provide information about the structure of the CNT/polymer composites. The effect of nanotubes on the non-isothermal crystallization behaviour of the nanocomposites was also studied by differential scanning calorimetry.  相似文献   

11.
In this study a series of multi-walled carbon nanotube (MWCNT)/Polyethylene (PE) composites with different kinds and several concentrations of carbon nanotubes (CNTs) were investigated. The morphology and degree of dispersion of the fillers in the polymer matrix at different length scales was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both individual and agglomerated MWCNTs were evident but a good dispersion was observed for some of them. TGA measurements were performed on nanocomposites in order to understand if CNTs affect the stabilization mechanism during thermal and oxidative degradation. The analysis demonstrates that MWCNTs presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. In contrast, thermal oxidative degradation in air is delayed up to about 100 °C dependently from MWCNTs concentration, in the range used here (0.1-2.0 wt%), and degree of dispersion. The stabilization is due to the formation of a thin protective layer of entangled MWCNTs kept together by carbon char generated on the surface of the nanocomposites as shown by SEM images taken on degradation residues.  相似文献   

12.
采用原位芳基重氮化反应对碳纳米管进行苯磺酸功能化, 进而制备了聚吡咯/苯磺酸化碳纳米管复合材料(PPy/f-MWCNTs), 通过透射电镜(TEM)及扫描电镜(SEM)测试发现, 氢键诱导使聚吡咯成功地包覆在碳纳米管表面. 循环伏安和恒流充放电测试结果表明, 复合材料具有良好的电化学电容性能, 当聚吡咯与苯磺酸化碳纳米管质量比为1:1时, 复合材料在1.0 A·g-1的电流密度下的比容量达266 F·g-1, 而且聚吡咯利用率比未功能化聚吡咯/碳纳米管(PPy/p-MWCNTs)和纯聚吡咯(PPy)提高了1倍以上.  相似文献   

13.
The dispersion of the nanometer-sized carbon nanotubes in a polymer matrix leads to a marked improvement in the properties of the polymer. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt compounded with multiwalled carbon nanotubes (MWCNTs). A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The morphology of the composite was observed with scanning electron microscopy. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The thermal stability of the composites was studied using thermogravimetric analysis and their activation energy during thermal degradation was determined using the Kissinger and Flynn-Wall-Ozawa methods. The activation energy of PLLA/PLLA-g-MWCNT was higher than that of PLLA/MWCNT, which indicates that the composite made with the PLLA-g-MWCNTs was more thermally stable than the composite made with the MWCNTs.  相似文献   

14.
Polyaniline nanofibers and their composites with carbon nanotubes were developed as an effective flame‐retardant material using a facile green method. Polyaniline nanofibers were used as a smart flame‐retardant for acrylonitrile–butadiene–styrene polymer. The polyaniline nanofibers were dispersed in polymer matrix forming well‐dispersed polymer nanocomposites. Effect of polyaniline nanofiber mass ratio on the polymer nanocomposite properties was studied. Polyaniline nanofiber composites with carbon nanotubes were also dispersed in polymer matrix. The thermal stability and flammability properties of the polymer nanocomposites were investigated. The rate of burning of polymer nanocomposites achieved 82.5% reduction (7.32 mm/min) compared with virgin polymer (42.5 mm/min). The reduction in peak heat release rate and total heat release of the polymer nanocomposites containing nanofibers achieved 74 and 34%, respectively. Interestingly, the average mass loss rate was significantly reduced by 58% and the emission of carbon monoxide and carbon dioxide gases were suppressed by 20 and 47%, respectively. The effect of polyaniline nanofibers composites on the flammability of polymer nanocomposites was also studied. Polyaniline nanofibers and their composites were characterized using Fourier transform infrared spectroscopy and transmission and scanning electron microscopy. The dispersion of polyaniline nanofibers in polymer nanocomposites was characterized using transmission electron microscopy. The different polymer nanocomposites were characterized using thermogravimetric analysis, UL94 flame chamber, and cone calorimeter tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

16.
This paper focuses on the influence of ionic liquid on carbon nanotube based elastomeric composites. Multi-walled carbon nanotubes (MWCNTs) are modified using an ionic liquid at room temperature, 1-butyl 3-methyl imidazolium bis (trifluoromethylsulphonyl) imide (BMI) and modified MWCNTs exhibit physical (cation–π/π–π) interaction with BMI. The polychloroprene rubber (CR) composites are prepared using unmodified and BMI modified MWCNTs. The presence of BMI not only increases the alternating current (AC) electrical conductivity and polarisability of the composites but also improves the state of dispersion of the tubes as observed from dielectric spectroscopy and transmission electron microscopy respectively. In addition to the hydrodynamic reinforcement, the formation of improved filler–filler networks is reflected in the dynamic storage modulus (E′) for modified MWCNTs/CR composites in amplitude sweep measurement upon increasing the proportion of BMI. Hardness and mechanical properties are also studied for the composites as a function of BMI.  相似文献   

17.
Summary: Multiwalled carbon nanotubes (MWCNTs) synthesized using chemical vapor deposition method were dispersed in poly(trimethylene terephthalate) (PTT, Mv = 88,000) by melt compounding technique using DMS microcompounder. The nanocomposites consisting of varying amounts of MWCNTs were characterized by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of carbon nanotubes on the crystallization behavior (under isothermal and non isothermal crystallization conditions) of PTT was studied using DSC. The presence of carbon nanotubes didn't show any significant effect on crystallization temperature of PTT matrix under non-isothermal conditions. Crystallization studies under isothermal conditions were carried out at different temperatures i.e 185, 190, 195 and 200 °C. Complete crystallization was observed within 60 sec at 185 °C whereas at 200 °C, longer time was required for complete crystallization. Crystal growth was also investigated using hot stage polarizing microscope (PLM). The effect of annealing time at 200 °C was investigated in the presence as well as in the absence of varying amounts of MWCNTs. Spherulitic growth was seen and the spherulite size in all the samples increased with annealing time. Morphological characterization using SEM and TEM showed a uniform dispersion of MWCNTs and poor compatibility with PTT matrix.  相似文献   

18.
结合环糊精包覆和热处理技术制备了炭/多壁碳纳米管(C/MWCNTs)复合材料, 并研究其应用于超级电容器的性能.利用扫描电子显微镜、透射电子显微镜、X射线衍射和拉曼光谱等技术对C/MWCNTs复合材料的形貌及结构进行分析.采用循环伏安和恒流充放电等电化学测试方法研究其电容特性.结果表明, C/MWCNTs复合材料具有良好的电化学性能, 远优于相应的炭及MWCNTs样品.在1 A/g电流密度下, 比电容可达到145 F/g, 循环3000次后, 容量无明显衰减.  相似文献   

19.
以P25 TiO2(德国Degussa化学公司)粉末为原料采用溶胶-凝胶法制备了含有不同CdS质量分数的复合光催化剂,利用多壁碳纳米管(MWCNTs)对CdS/TiO2进行修饰,制备了一系列不同CdS含量的MWCNTs/CdS/TiO2光催化材料。对所得的光催化剂进行了扫描电镜、低温氮吸附-脱附及光解水制氢活性的表征。研究了MWCNTs对CdS/TiO2催化剂体系光解水制氢活性的影响。结果表明,MWCNTs的引入均使得光解水产氢量(14.0 μmol)增加,与未加入MWCNTs的复合光化剂产氢量(11.6 μmol)相比,平均产氢率增加了18%,最高可达21%。  相似文献   

20.
We have successfully fabricated poly(ethylene oxide) (PEO) nanofibers containing embedded multi‐wall carbon nanotubes (MWCNTs). An initial dispersion of the MWCNTs in distilled water was achieved using sodium dodecyl sulfate. Subsequently, the dispersion was decanted into a PEO solution, which enabled separation of the MWCNTs and their individual incorporation into the PEO nanofibers on subsequent electrospinning. Initially, the carbon nanotube (CNT) rods were randomly oriented, but owing to the sink‐like flow in the electrospinning wedge, they became gradually oriented along the streaming direction, in order that oriented CNTs were obtained on entering the electrospun jet. Individual MWCNTs became embedded in the nanofibers, and were mostly aligned along the fiber axis. Evidence of load transfer to the nanotubes in the composite nanofiber was observed from the field‐emission scanning electron microscopy, transmission electron microscopy and conductivity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号