首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collision-activated dissociation (CAD) of tryptic peptides is a cornerstone of mass spectrometry-based proteomics research. Principal component analysis of a database containing 15,000 high-resolution CAD mass spectra of gas-phase tryptic peptide dications revealed that they fall into two classes with a good separation between the classes. The main factor determining the class identity is the relative abundance of the peptide bond cleavage after the first two N-terminal residues. A possible scenario explaining this bifurcation involves trans- to cis-isomerization of the N-terminal peptide bond, which facilitates solvation of the N-terminal charge on the second backbone amide and formation of stable b(2) ions in the form of protonated diketopiperazines. Evidence supporting this scenario is derived from statistical analysis of the high-resolution CAD MS/MS database. It includes the observation of the strong deficit of a(3) ions and anomalous amino acid preferences for b(2) ion formation.  相似文献   

2.
We report on the characteristics of the radical‐ion‐driven dissociation of a diverse array of β‐amino acids incorporated into α‐peptides, as probed by tandem electron‐capture and electron‐transfer dissociation (ECD/ETD) mass spectrometry. The reported results demonstrate a stronger ECD/ETD dependence on the nature of the amino acid side chain for β‐amino acids than for their α‐form counterparts. In particular, only aromatic (e.g., β‐Phe), and to a substantially lower extent, carbonyl‐containing (e.g., β‐Glu and β‐Gln) amino acid side chains, lead to N? Cβ bond cleavage in the corresponding β‐amino acids. We conclude that radical stabilization must be provided by the side chain to enable the radical‐driven fragmentation from the nearby backbone carbonyl carbon to proceed. In contrast with the cleavage of backbones derived from α‐amino acids, ECD of peptides composed mainly of β‐amino acids reveals a shift in cleavage priority from the N? Cβ to the Cα? C bond. The incorporation of CH2 groups into the peptide backbone may thus drastically influence the backbone charge solvation preference. The characteristics of radical‐driven β‐amino acid dissociation described herein are of particular importance to methods development, applications in peptide sequencing, and peptide and protein modification (e.g., deamidation and isomerization) analysis in life science research.  相似文献   

3.
Electron capture by both bare and microsolvated small peptide dications was investigated by colliding these ions with sodium vapor in an accelerator mass spectrometer to provide insight into processes that occur on the microsecond time frame. Survival of the intact peptide monocation after electron capture depends strongly on molecular size. For dipeptides, no intact reduced species were observed; the predominant ions correspond to loss of hydrogen and ammonia. In contrast, the intact reduced species was observed for larger peptides. Calculated structures indicate that the diprotonated dipeptide ions form largely extended structures with low probability of internal ionic hydrogen bonding (i.e., charge solvation) whereas internal ionic H-bonding occurs extensively for larger peptide dications. Solvation of the peptide ions with between one to seven methanol molecules reduces the total extent of H loss even for dipeptides where intact reduced species can survive more than a microsecond after electron capture. The yield of ions corresponding to cleavage of NCalpha bonds (c+ and z+* ions) does not depend strongly on peptide size but decreases with the extent of microsolvation for the dipeptide dications. H-bonding appears to play an important role for the survival of the intact reduced ions but less so for the formation of c+ and z+* ions. Our results indicate that electron capture predominantly occurs at the ammonium groups (at least 70 to 80%), and provides important new insights into the electron capture dissociation process.  相似文献   

4.
Unusual fragmentation was observed for doubly charged VPDPR in which cleavage C-terminal to proline and N-terminal to aspartic acid yielded b(2) (+ a(2))/y(3) complementary ions. This unique fragmentation is contradictory to trends previously established by statistical analysis of peptide tandem mass (MS/MS) spectra. Substitution of alanine for aspartic acid (i.e., VPAPR) did not change the fragmentation, indicating the cleavage was not directed by aspartic acid. Fragmentation patterns for VPAPR and V(NmA)APR (NmA = N-methyl alanine) were compared to determine whether conformational constraints from proline's cyclic side-chain contribute to b(2) ion formation. While both peptide sequences fragmented to yield b(2)/y(3) ions, only VPAPR produced a(2) ions, suggesting the VP b(2) ion is structurally different from the V(NmA) b(2) ion. Instead, the V(NmA) b(2) ion was accompanied by an ion corresponding to formal loss of 71. The suspected structural differences were confirmed by isolation and fragmentation of the respective b(2) ions (i.e., MS(3) spectra). Evidence supporting a diketopiperazine structure for the VP b(2) ion is reported. Fragmentation patterns for the VP b(2) ion and a synthetic VP diketopiperazine showed great similarity. N-terminal acetylation of VPAPR prevented the formation of the VP b(2) ion, presumably by blocking nucleophilic attack by the N-terminal amine on the carbonyl oxygen of the protonation site. Acetylation of the N-terminus for V(NmA)APR did not prevent the formation of the V(NmA) b(2) ion, indicating the V(NmA) b(2) ion has a structure, presumably that of an oxazolone, which requires no attack by the N-terminus for formation. Finally, high-resolution, accurate mass measurements determined that the V(NmA) (b(2)-71) ion results from losing a portion of valine from oxazolone V(NmA) b(2) ion, rather than cross-ring cleavage of the alternate diketopiperazine.  相似文献   

5.
The complexes formed by alkali metal cations (Cat(+) = Li(+), Na(+), K(+), Rb(+)) and singly charged tryptic peptides were investigated by combining results from the low-energy collision-induced dissociation (CID) and ion mobility experiments with molecular dynamics and density functional theory calculations. The structure and reactivity of [M + H + Cat](2+) tryptic peptides is greatly influenced by charge repulsion as well as the ability of the peptide to solvate charge points. Charge separation between fragment ions occurs upon dissociation, i.e. b ions tend to be alkali metal cationised while y ions are protonated, suggesting the location of the cation towards the peptide N-terminus. The low-energy dissociation channels were found to be strongly dependant on the cation size. Complexes containing smaller cations (Li(+) or Na(+)) dissociate predominantly by sequence-specific cleavages, whereas the main process for complexes containing larger cations (Rb(+)) is cation expulsion and formation of [M + H](+). The obtained structural data might suggest a relationship between the peptide primary structure and the nature of the cation coordination shell. Peptides with a significant number of side chain carbonyl oxygens provide good charge solvation without the need for involving peptide bond carbonyl groups and thus forming a tight globular structure. However, due to the lack of the conformational flexibility which would allow effective solvation of both charges (the cation and the proton) peptides with seven or less amino acids are unable to form sufficiently abundant [M + H + Cat](2+) ion. Finally, the fact that [M + H + Cat](2+) peptides dissociate similarly as [M + H](+) (via sequence-specific cleavages, however, with the additional formation of alkali metal cationised b ions) offers a way for generating the low-energy CID spectra of 'singly charged' tryptic peptides.  相似文献   

6.
The effect of peptide dication charge location on electron capture dissociation (ECD) fragmentation pattern is investigated. ECD fragmentation patterns are compared for peptides with amide and free acid C-terminal groups. ECD of free acid compared with C-terminally amidated peptides with basic residues near the N-terminus demonstrates increased formation of a-type ions. Similarly, ECD of free acid compared with C-terminally amidated peptides with basic residues near the C-terminus exhibits increased formation of y-type ions. Alteration of the peptide sequence to inhibit the formation of charged side chains (i.e., amino acid substitution and acetylation) provides further evidence for charge location effect on ECD. We propose that formation of zwitterionic peptide structures increases the likelihood of amide nitrogen protonation (versus basic side chains), which is responsible for the increase in a- and y-type ion formation.  相似文献   

7.
Irradiation of protonated polypeptides NH2–RH+–COOH by >10 eV electrons leads to further ionization and fast intramolecular charge transfer to the free N-terminus. The resulting species may undergo further hydrogen atom rearrangement to form distonic ions N+H3–RH+–COO√. Such transfer is exothermic but can involve an appreciable barrier, e.g., 2.3±0.5 eV for MH2+√ ions of the peptide ACTH 1–10. Radical polypeptide dications can, therefore, be viewed as hydrogen atom wires. Subsequent capture of low energy electrons results in fragmentation. The pattern of this electronic excitation dissociation (EED) is consistent with hydrogen transfer prior to electron capture.  相似文献   

8.
One Hundred Fifty-Seven nm photodissociation of singly protonated peptides generates unusual distributions of fragment ions. When the charge is localized at the C-terminus of the peptide, spectra are dominated by x-, v-, and w-type fragments. When it is sequestered at the N-terminus, a- and d-type ions are overwhelmingly abundant. Evidence is presented suggesting that the fragmentation occurs via photolytic radical cleavage of the peptide backbone at the bond between the alpha- and carbonyl-carbons followed by radical elimination to form the observed daughter ions.  相似文献   

9.
Mammalian ribonucleotide reductase (mRR) is a potential target for cancer intervention. A series of lactam-bridged cyclic peptide inhibitors (1-9) of mRR have been synthesized and tested in previous work. These inhibitors consist of cyclic and linear regions, causing their mass spectral characterization to be a challenge. We determined the fragmentation mechanism of cyclic peptides 1-9 using an ion-trap mass spectrometer equipped with an ESI source. Low-energy collision-induced dissociation of sodiated cyclic peptides containing linear branches follows a general pathway. Fragmentation of the linear peptide region produced mainly a and b ions. The ring peptide region was more stable and ring opening required higher collision energy, mainly occurring at the amide bond adjacent to the lactam bridge. The sodium ion, which bound to the carbonyl oxygen of the lactam bridge, acted as a fixed charge site and directed a charge-remote, sequence-specific fragmentation of the ring-opened peptide. Amino acid residues were cleaved sequentially from the C-terminus to the N-terminus. Our findings have established a new way to sequence cyclic peptides containing a lactam bridge based on charge-remote fragmentation. This methodology will permit unambiguous identification of high-affinity ligands within cyclic peptide libraries.  相似文献   

10.
A c1 ion was observed with significant yield in the tandem mass (MS/MS) spectra of peptide ions containing glutamine as the second amino acid residue from the N-terminus. The c1 fragment was generated independently of the N-terminal residue of the peptide, but its abundance was strongly dependent on the side-chain identity. This ion is not a common fragmentation product in low-energy collision-induced dissociation of peptide ions, but it assists in identification of the first two amino acid residues, often difficult due to a low or absent signal from the heaviest y ion. A consecutive fragmentation mechanism is proposed, involving a b2 ion with a six-membered ring as an intermediate, to explain the exceptional stability of the c1 fragment ion. The utility of this information is discussed, especially in de novo sequencing of peptide ions.  相似文献   

11.
Derivatization is used to increase both negative-ion sensitivity and positive-ion sequence information in the liquid secondary-ion mass spectra (LSIMS) of a series of peptides. The derivatization method involves acylation with pentafluorobenzoyl fluoride in a single-step reaction, and the reaction mixture is applied directly to the probe tip for analysis. Acylation takes place at the unprotected N-terminus, tyrosine, and lysine. The derivatives exhibit increased signal-to-noise ratio for [M-H]- ions, especially where there is not already an acidic amino acid residue in the peptide. In positive-ion LSIMS, the N-terminal group acts to retain the charge at the N-terminus, simplifying the fragmentation by producing N-terminal fragment ions. It also increases positive-ion fragmentation, sometimes very dramatically, making sequence determination more straightforward. The simplicity of the process, together with the enhancements it provides, make this a generally useful method for obtaining peptide structural information.  相似文献   

12.
We investigated the effect of N-terminal amino group and carboxyl group methylation on peptide analysis by electrospray mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Permethylation of the N-terminal amino group and the carboxyl groups can reduce metal ion adducts but does not enhance sensitivity in electrospray as previously observed for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. N-terminal trimethylated peptides exhibit collision-induced dissociation (CID) tandem mass spectra that differ from their unmodified analogs; the results support the mobile proton hypothesis of peptide fragmentation. A permanent positive charge at the N-terminus leads to competition between permanent-charge directed processes and loss of the N-terminal trimethyl amino group. Carboxyl methylation has no effect on fragmentation behavior other than to shift the mass of fragments containing methylated carboxyl groups. Comparison of regular and tandem mass spectra of different methylated peptides allowed probing the location of incomplete methylation, the proton displaced by alkali metal ions and the purity of a mass-selected methylated peptide ion.  相似文献   

13.

CE-MS was employed to identify two unknown degradation products of the model tripeptide Phe-α-Asp-Gly heated at 80 °C in aqueous solution at pH 7.4. Both compounds displayed essentially identical mass spectra indicating the presence of peptide diastereomers. The [M + H]+-ion at m/z 338 suggested a tripeptide composed of the amino acids Phe, Gly and Asp. The fragmentation pattern indicated that Phe was not located at the N-terminus. Subsequently, the linear peptide α-Asp-Phe-Gly and the branched peptide Asp(Gly)-Phe were synthesized and analyzed by CE-MS. The mass spectrum of synthetic α-Asp-Phe-Gly was identical to that of the unknown compounds confirming the structure of the degradation products. Asp(Gly)-Phe displayed a complex fragmentation pattern. In conclusion, amino acid sequence inversion represents another degradation pathway of Phe-α-Asp-Gly at pH 7.4 besides known reactions including isomerization, enantiomerization, cyclization to diketopiperazine derivatives and backbone hydrolysis. The mechanism of the rearrangement of the amino acid sequence is proposed to proceed via an aza-bridged intermediate.

  相似文献   

14.
The collision induced dissociation of doubly-protonated (Ala)xHis (x=5, 6, 7, 8, 10) peptides have been studied. The major fragmentation reactions observed are symmetrical amide bond cleavages to give the complementary bm and yN-m ions, where N is the total number of residues in the peptide. Minor asymmetric cleavage to give doubly-protonated y ions also is observed, involving cleavage near the N-terminus. The shorter peptides (x=5, 6, 7) show major cleavage of the second amide bond to yield b2 and yN-2 ions, while (Ala)10His shows major symmetrical cleavage at the fourth and fifth amide bonds. (Ala)8His appears to be a transitional peptide in showing substantial symmetrical cleavage at the second, fourth, and fifth amide bonds. The results are in general agreement with the bifurcating nature of charge separation noted by Zubarev (J. Am. Soc. Mass Spectrom. 2008, 19, 1755–1763) from a statistical analysis of a large body of doubly-protonated tryptic peptide CID mass spectra. It is shown that the b2 ion derived from doubly-protonated (Ala)5His has a protonated oxazolone structure.  相似文献   

15.
We previously showed by using mass spectrometry that endothelin A selective receptor antagonists BQ123 and JKC301 form novel coordination compounds with sodium ions. This property may underlie the ability of an ET(A) antagonist to induce net tubular sodium reabsorption in the proximal tubule cells and reverse acute renal failure induced by severe ischemia. We have now defined the metal binding sites on BQ123 and JKC301 by subjecting the metal-containing peptides to multiple stages of collisionally activated decomposition (CAD) in an ion trap mass spectrometer. When submitted to low-energy CAD, the ring opens at the Asp-Pro amide bond. The metal ion, which bonds, inter alia, to the carbonyl oxygen of the proline residue, acts as a fixed charge site, and directs a charge-remote, sequence-specific fragmentation of the ring-opened peptide. Amino acid residues are sequentially cleaved from the C-terminal end, and the terminal aziridinone structure moves one step toward the N-terminus with each C-terminal amino acid residue removed. These observations are the basis of a new method to sequence cyclic peptides. Amino acid residues are observed as sets of three ions, a*(n)PD, b*(n)PD and c*(n)PD where n is the number of amino acid residues in the peptide.  相似文献   

16.
Aspartic acid (Asp)-containing peptides with the fixed charge derivative tris(2,4,6trimethoxyphenyl) phosphonium (tTMP-P+) were explored computationally and experimentally by hydrogen/deuterium (H/D) exchange and by fragmentation studies to probe the phenomenon of selective cleavage C-terminal to Asp in the absence of a "mobile" proton. Ab initio modeling of the tTMP-P+ electrostatic potential shows that the positive charge is distributed on the phosphonium group and therefore is not initiating or directing fragmentation as would a "mobile" proton. Geometry optimizations and vibrational analyses of different Asp conformations show that the Asp structure with a hydrogen bond between the side-chain hydroxy and backbone carbonyl lies 2.8 kcal/mol above the lowest energy conformer. In reactions with D2O, the phosphonium-derived doubly charged peptide (H+)P+LDIFSDF rapidly exchanges all 12 of its exchangeable hydrogens for deuterium and also displays a nonexchanging population. With no added proton, P+LDIFSDF exchanges a maximum of 4 of 11 exchangeable hydrogens for deuterium. No exchange is observed when all acidic groups are converted to the corresponding methyl esters. Together, these H/D exchange results indicate that the acidic hydrogens are "mobile locally" because they are able to participate in exchange even in the absence of an added proton. Fragmentation of two distinct (H+)P+LDIFSDF ion populations shows that the nonexchanging population displays selective cleavage, whereas the exchanging population fragments more evenly across the peptide backbone. This result indicates that H/D exchange can sometimes distinguish between and provide a means of separation of different protonation motifs and that these protonation motifs can have an effect on the fragmentation.  相似文献   

17.
Peptide and protein lipoxidation is a deleterious process which has been related to several degenerative conditions. In the present study, the interaction of lipid secondary oxidation products with peptides was investigated by evaluating the modifications occurring to angiotensin II (Ang-II) in the presence of an oxidizing polyunsaturated glycerophospholipid (1-palmitoyl-2-arachidonoyl-glycerophosphatidylcholine, PAPC). PAPC oxidation was promoted by Fenton chemistry and the oxidation products were incubated with Ang-II. The reaction products were finally analysed by off-line nanospray high-performance liquid chromatography/matrix-assisted laser desorption/ionization tandem mass spectrometry (nano-HPLC/MALDI-TOF-MS/MS). Ang-II was found to form adducts with 26 different aldehydes, leading to 37 distinct reaction products. Modification of Ang-II occurred through reaction with reactive carbonyl species (RCS) originating from fatty acyl chain cleavage, while interactions with the oxidized phospholipid could not be detected. Adduction was observed to occur both by Michael and Schiff base mechanisms, most prevalently taking place at the peptide N-terminus or the arginine residue. Histidine modification could only be demonstrated to occur via Michael addition with two aldehydes: 4-hydroxy-2-nonenal (HNE) and 2-octenal. The highly reactive 4-oxo-2-nonenal (ONE) was shown to react preferentially with the arginine side chain, while malondialdehyde addition could only be confirmed at the N-terminus. Aspartic acid oxidative decarboxylation, amino acid side chain oxidation, multiple adduction or peptide cross-links could not be perceived. The inability to detect these reaction products is indicative of their low abundance or non-existence in competitive reaction conditions. The multiplicity of peptide modifications described emphasizes the complexity of lipoxidation, the effects of which are not possible to fully understand by the evaluation of independent reaction products.  相似文献   

18.
A prominent dissociation path for electrospray generated tryptic peptide ions is the dissociation of the peptide bond linking the second and third residues from the ammo-terminus. The formation of the resulting b2 and y n−2 fragments has been rationalized by specific facile mechanisms. An examination of spectral libraries shows that this path predominates in diprotonated peptides composed of 12 or fewer residues, with the notable exception of peptides containing glutamine or glutamic acid at the N-terminus. To elucidate the mechanism by which these amino acids affect peptide fragmentation, we synthesized peptides of varying size and composition and examined their MS/MS spectra as a function of collision voltage in a triple quadrupole mass spectrometer. Loss of water from N-terminal glutamic acid and glutamine is observed at a lower voltage than any other fragmentation, leading to cyclization of the terminal residue. This cyclization results in the conversion of the terminal amine group to an imide, which has a lower proton affinity. As a result, the second proton is not localized at the N-terminus but is readily transferred to other sites, leading to fragmentation near the center of the peptide. Further confirmation was obtained by examining peptides with N-terminal pyroglutamic acid and N-acetyl peptides. Peptides with N-terminal proline maintain the trend of forming b2 and y n−2 because their ring contains an imine rather than imide and has sufficient proton affinity to retain the proton at the N-terminus.  相似文献   

19.
The widespread occurrence of the neutral loss of one to six amino acid residues as neutral fragments from doubly protonated tryptic peptides is documented for 23 peptides with individual sequences. Neutral loss of amino acids from the N-terminus of doubly charged tryptic peptides results in doubly charged y-ions, forming a ladder-like series with the ions [M + 2H](2+) = y(max) (2+), y(max - 1) (2+), y(max - 2) (2+), etc. An internal residue such as histidine, proline, lysine or arginine appears to favor this type of fragmentation, although it was sometimes also observed for peptides without this structure. For doubly protonated non-tryptic peptides with one of these residues at or near the N-terminus, we observed neutral loss from the C-terminus, resulting in a doubly charged b-type ion ladder. The analyses were performed by Q-TOF tandem mass spectrometry, facilitating the recognition of neutral loss ladders by their 2+ charge state and the conversion of the observed mass differences into reliable sequence information. It is shown that the neutral loss of amino acid residues requires low collision offset values, a simple mechanistic explanation based on established fragmentation rules is proposed and the utility of this neutral loss fragmentation pathway as an additional source for dependable peptide sequence information is documented.  相似文献   

20.
《Chemical physics letters》2001,331(3-4):216-224
The development of electrospray has enabled generation of gas-phase multiply charged metal ion complexes with various solvent molecules. These species exhibit rich fragmentation chemistry, involving competition among neutral ligand loss, ligand cleavage, and dissociative electron and proton transfer. Acetonitrile is a common aprotic solvent. Here we present a comprehensive MS/MS study on acetonitrile complexes of divalent metal cations. We measured the critical sizes below which dissociation channels other than the trivial neutral evaporation become operative and minimum sizes at which dications remain stable against charge reduction. For all sizes between the two, low-energy fragmentation patterns have been elucidated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号