首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学》2017,35(7):1069-1078
Three‐dimensional porous nitrogen‐doped graphene aerogels (NGAs ) were synthesized by using graphene oxide (GO ) and chitosan (CS ) via a self‐assembly process by one‐pot hydrothermal method. The morphology and structure of the as‐prepared materials were characterized by means of scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, XPS spectroscopy, Raman spectroscopy, nitrogen adsorption/desorption measurement and Fourier transform infrared spectroscopy. The electrochemical performance of NGAs was studied by cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. The microstructure, surface area and capacitance of NGAs could be facilely controlled by adding different amounts of chitosan. The prepared NGA ‐4 showed a specific capacitance of 148.0 F/g at the discharge current density of 0.5 A/g and also retained 95.3% of the initial capacitance after 5000 cycles at the scan rate of 10 mV /s. It provided a possible way to obtain graphene based materials with high surface area and capacitance.  相似文献   

2.
Biodegradability of graphene is one of the fundamental parameters determining the fate of this material in vivo. Two types of aqueous dispersible graphene, corresponding to single‐layer (SLG) and few‐layer graphene (FLG), devoid of either chemical functionalization or stabilizing surfactants, were subjected to biodegradation by human myeloperoxidase (hMPO) mediated catalysis. Graphene biodegradation was also studied in the presence of activated, degranulating human neutrophils. The degradation of both FLG and SLG sheets was confirmed by Raman spectroscopy and electron microscopy analyses, leading to the conclusion that highly dispersed pristine graphene is not biopersistent.  相似文献   

3.
Understanding the impact of the defects/defect density of electrocatalysts on the activity in the triiodide (I3?) reduction reaction of dye‐sensitized solar cells (DSSCs) is indispensable for the design and construction of high‐efficiency counter electrodes (CEs). Active‐site‐enriched selenium‐doped graphene (SeG) was crafted by ball‐milling followed by high‐temperature annealing to yield abundant edge sites and fully activated basal planes. The density of defects within SeG can be tuned by adjusting the annealing temperature. The sample synthesized at an annealing temperature of 900 °C exhibited a superior response to the I3? reduction with a high conversion efficiency of 8.42 %, outperforming the Pt reference (7.88 %). Improved stability is also observed. DFT calculations showed the high catalytic activity of SeG over pure graphene is a result of the reduced ionization energy owing to incorporation of Se species, facilitating electron transfer at the electrode–electrolyte interface.  相似文献   

4.
The adsorption of six electron donor–acceptor (D/A) organic molecules on various sizes of graphene nanoflakes (GNFs) containing two common defects, double‐vacancy (5‐8‐5) and Stone–Wales (55‐77), are investigated by means of ab initio DFT [M06‐2X(‐D3)/cc‐pVDZ]. Different D/A molecules adsorb on a defect graphene (DG) surface with binding energies (ΔEb) of about ?12 to ?28 kcal mol?1. The ΔEb values for adsorption of molecules on the Stone–Wales GNF surface are higher than those on the double vacancy GNF surface. Moreover, binding energies increase by about 10 % with an increase in surface size. The nature of cooperative weak interactions is analyzed based on quantum theory of atoms in molecules, noncovalent interactions plot, and natural bond order analyses, and the dominant interaction is compared for different molecules. Electron density population analysis is used to explain the n‐ and p‐type character of defect graphene nanoflakes (DGNFs) and also the change in electronic properties and reactivity parameters of DGNFs upon adsorption of different molecules and with increasing DGNF size. Results indicate that the HOMO–LUMO energy gap (Eg) of DGNFs decreases upon adsorption of molecules. However, by increasing the size of DGNFs, the Eg and chemical hardness of all complexes decrease and the electrophilicity index increases. Furthermore, the values of the chemical potential of acceptor–DGNF complexes decrease with increasing size, whereas those of donor–DGNF complexes increase.  相似文献   

5.
6.
Phosphorus‐doped (P‐doped) graphene with the P doping level of 1.30 at % was synthesized by annealing the mixture of graphene and phosphoric acid. The presence of P was confirmed by elemental mapping and X‐ray photoelectron spectroscopy, while the morphology of P‐doped graphene was revealed by using scanning electron microscopy and transmission electron microscopy. To investigate the effect of P doping, the electrochemical properties of P‐doped graphene were tested as a supercapacitor electrode in an aqueous electrolyte of 1 M H2SO4. The results showed that doping of P in graphene exhibited significant improvement in terms of specific capacitance and cycling stability, compared with undoped graphene electrode. More interestingly, the P‐doped graphene electrode can survive at a wide voltage window of 1.7 V with only 3 % performance degradation after 5000 cycles at a current density of 5 A g?1, providing a high energy density of 11.64 Wh kg?1 and a high power density of 831 W kg?1.  相似文献   

7.
8.
Low‐layered, transparent graphene is accessible by a chemical vapor deposition (CVD) technique on a Ni‐catalyst layer, which is deposited on a <100> silicon substrate. The number of graphene layers on the substrate is controlled by the grain boundaries in the Ni‐catalyst layer and can be studied by micro Raman analysis. Electrical studies showed a sheet resistance (Rsheet) of approximately 1435 Ω per □, a contact resistance (Rc) of about 127 Ω, and a specific contact resistance (Rsc) of approximately 2.8×10?4 Ω cm2 for the CVD graphene samples. Transistor output characteristics for the graphene sample demonstrated linear current/voltage behavior. A current versus voltage (IdsVds) plot clearly indicates a p‐conducting characteristic of the synthesized graphene. Gas‐sensor measurements revealed a high sensor activity of the low‐layer graphene material towards H2 and CO. At 300 °C, a sensor response of approximately 29 towards low H2 concentrations (1 vol %) was observed, which is by a factor of four higher than recently reported.  相似文献   

9.
10.
11.
Herein, a new strategy has been developed through combining a microwave‐assisted technique with hydrothermal treatment to reduce graphene waste and improve production yield of graphene quantum dots (GQDs) prepared by top‐down methods. By using fluorinated graphene oxide (FGO) as a raw material, fluorinated GQDs and nonfluorinated GQDs can be synthesized. Additionally, in the fluorinated GQDs, the protective shell supplied by fluorine improves the pH stability of photoluminescence and the strong electron‐withdrawing group, ?F, reduces the π‐ electron density of the aromatic structure; thus inhibiting reactivity toward singlet oxygen produced during irradiation and improving the photostability. Therefore, the as‐prepared fluorinated GQDs with excellent photo‐ and pH stability are suitable for long‐term cellular imaging.  相似文献   

12.
The capacitive property of an electrode/electrolyte interface can be described by complex capacitance. The capacitance plane plots (CPPs) of ideal polarized and kinetic controlled electrodes are derived based on the concept of complex capacitance. By using CPPs, the capacitance of electrode/electrolyte interface can be conveniently determined. In this work, CPPs obtained in ac impedance experiments are employed for the first time in studying the kinetics of adsorption process of the thiol monolayer. The coverage of octadecanethiol (ODT) monolayer on gold is examined as a function of adsorption time. The adsorption process of ODT molecules on gold exhibits two distinct phases: an initial rapid step followed by a slow one. The simple Langmuir model best explains our experimental data in the initial adsorption stage. CPPs and cyclic voltammetry (CV) indicate that, in the initial adsorption step, the ODT monolayer contains defects whose number decreases with the increasing of adsorption time.  相似文献   

13.
In this study, N,P co‐doped graphene (NPG) was prepared by a one‐step pyrolysis using a mixture of graphene oxide and hexachlorocyclotriphosphazene (HCCP), in which HCCP was used as both the N and P source. Furthermore, it is shown that NPG electrodes, as efficient metal‐free electrocatalysts, have a high onset potential, high current density, and long‐term stability for the oxygen reduction reaction.  相似文献   

14.
By using a size‐dependent cohesive energy formula for two‐dimensional coordination materials, the bandgap openings of ideal graphene quantum dots (GQDs) and nanoribbons (GNRs) have been investigated systematically regarding dimension, edge geometry, and magnetic interaction. Results demonstrate that the bandgap openings in GQDs can be dominated by the change of atomic cohesive energy. Relative to zigzag GQDs, the openings in the armchair ones are more substantial, attributed to its edge instability. The change of cohesive energy can also lead to bandgap openings in zigzag and armchair GNRs. The contribution from the interedge magnetic interaction in zigzag GNRs is negligible, while the cohesive‐energy induced openings in armchair GNRs can oscillate according to the so‐called full‐wavelength effect, depending on the width. The model prediction provides physicochemical insight into the bandgap openings in graphene.  相似文献   

15.
16.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

17.
A series of Co phthalocyanine (CoPc) derivatives and their respective nitrogen doped graphene quantum dot conjugates were used as catalysts towards the electrooxidation of hydrazine. Using a glassy carbon electrode as a support for the electrocatalysts, through cyclic voltammetry and chronoamperometry, the effects of combining the CoPcs with the nitrogen doped graphene quantum dots (NGQDs) were studied. The general observations made were that the NGQDs improve the catalytic activity of the CoPcs in both the π‐π stacked and covalently linked conjugates by increasing the sensitivities and lowering the limits of detection with values as low as 0.43 μM being recorded.  相似文献   

18.
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual‐color GQD‐based probes and CNTs and subsequently self‐recognition between DNA probes and targets.  相似文献   

19.
Sequential single‐electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir‐Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film (a‐Si:H) is reported. Quantized double‐layer charging of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the excess of negative/positive charged defect states in the a‐Si:H layer. The particular charge states in a‐Si:H are created by the simultaneous application of a suitable bias voltage and illumination before the measurement.  相似文献   

20.
The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号