首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rechargeable molecular‐cluster batteries (MCBs) based on the manganese cluster complex [Mn12O12(CH3CH2C(CH3)2COO)16(H2O)4] ([Mn12]) that exhibited a capacity of approximately 200 A h kg?1 in the battery voltage range of 4.0 to 2.0 V were developed. In these batteries, the capacity of approximately 100 A h kg?1 in the range of 4.0–3.0 V is caused by a chemical reduction from [Mn12]0 to [Mn12]8?, whereas the other half in the range of 3.0–2.0 V cannot be explained by a redox change of the Mn ions. We performed the cyclic voltammetry (CV) and 7Li solid‐state NMR measurements on the Mn12‐MCBs to investigate the origin of the capacity below 3.0 V. Pseudo‐rectangular‐shaped CV curves in the range of 3.0–2.0 V demonstrate the presence of an electrical double‐layer (EDL) capacitance in Mn12‐MCBs, which corresponds to approximately 100 A h kg?1. 7Li NMR studies suggest that Li ions form an EDL with electrons in carbon black electrodes in the capacitance voltage range. The capacitance effects are not formed by the single‐carbon electrodes alone, but appear only in the mixture of Mn12 and the carbon black electrodes. This type of coexistence of capacitance effects and redox reaction in one electrochemical cell is quite unusual and can serve as a new working principle for high‐performance energy‐storage devices.  相似文献   

2.
自首次报道氮掺杂碳纳米管具有优良的氧还原催化性能以来,碳基无金属材料作为贵金属基电催化剂的潜在替代品而被寄予厚望。碳骨架中普遍存在的本征缺陷位点是影响碳材料物理化学性质的重要因素。特定碳缺陷的引入可以打破原本完整的sp2碳骨架而形成局部畸变,改变邻近碳原子的电荷或自旋密度分布,进而优化催化过程反应物和中间产物的吸附/脱附,提升活性位点的催化活性。因此,在碳基材料中设计创造特定的缺陷结构成为了制备高活性电催化剂的重要研究方向。本文对近年来碳基无金属电催化剂中本征缺陷的研究进展进行了综述,归纳了碳材料中常见的3类本征缺陷(边界、空位或孔洞、拓扑畸变)的制备策略和表征手段,并深入讨论了不同类型碳缺陷的构型和电子结构与其电催化活性的内在关系。最后,我们对目前本征碳缺陷在电催化领域的研究挑战和未来前景进行了总结和展望。  相似文献   

3.
Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure-capacitance relationships for the EDLs of these systems. Here we present a theoretical framework termed "counter-charge layer in generalized solvents" (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment--the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion-ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominantly by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]) and in a mixture of [BMIM][BF(4)] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF(4)]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF(4)]; (2) the capacitance of EDLs near negative electrodes (with BMIM(+) ion as the counter-ion) is smaller than that near positive electrodes (with BF(4)(-) as the counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.  相似文献   

4.
A main issue in the production of robust supercapacitors is the creation of efficient and cost‐effective electrodes. We present here the realization of a kind of nitrogen‐ and oxygen‐containing activated carbon microspheres made from divinylbenzene, diallyl phthalate, and acrylonitrile monomers, which can be produced on a large scale for use in supercapacitors. The supercapacitor's performance is optimized by adjusting the carbonization temperature of the microspheres. Our preliminary result shows that the supercapacitor displays a maximum capacitance of 300 F/g at the current density of 1.0 A/g and retains ~82% of the capacitance after 10,000 charge–discharge cycles.  相似文献   

5.
Carbon materials for supercapacitor application   总被引:3,自引:0,他引:3  
The most commonly used electrode materials for electrochemical capacitors are activated carbons, because they are commercially available and cheap, and they can be produced with large specific surface area. However, only the electrochemically available surface area is useful for charging the electrical double layer (EDL). The EDL formation is especially efficient in carbon pores of size below 1 nm because of the lack of space charge and a good attraction of ions along the pore walls. The pore size should ideally match the size of the ions. However, for good dynamic charge propagation, some small mesopores are useful. An asymmetric configuration, where the positive and negative electrodes are constructed from different materials, e.g., activated carbon, transition metal oxide or conducting polymer, is of great interest because of an important extension of the operating voltage. In such a case, the energy as well as power is greatly increased. It appears that nanotubes are a perfect conducting additive and/or support for materials with pseudocapacitance properties, e.g. MnO(2), conducting polymers. Substitutional heteroatoms in the carbon network (nitrogen, oxygen) are a promising way to enhance the capacitance. Carbons obtained by one-step pyrolysis of organic precursors rich in heteroatoms (nitrogen and/or oxygen) are very interesting, because they are denser than activated carbons. The application of a novel type of electrolyte with a broad voltage window (ionic liquids) is considered, but the stability of this new generation of electrolyte during long term cycling of capacitors is not yet confirmed.  相似文献   

6.
电解液离子与炭电极双电层电容的关系   总被引:3,自引:0,他引:3  
以酚醛树脂基纳米孔玻态炭(NPGC)为电极, 通过微分电容伏安曲线的测试, 研究了水相体系电解液离子与多孔炭电极双电层电容的关系. 结果表明, 稀溶液中, 多孔炭电极的微分电容曲线在零电荷点(PZC)处呈现凹点, 电容降低, 双电层电容受扩散层的影响显著;若孔径小, 离子内扩散阻力大, 电容下降更为迅速, 扩散层对双电层电容的影响增大. 而增大炭材料的孔径或电解液浓度, 可明显减弱甚至消除扩散层对电容的影响. 炭电极的单位面积微分电容高, 仅表明孔表面利用率高, 如欲获得高的电容量, 还要有大的比表面积. 离子水化对炭电极的电容产生不利影响, 选用大离子和增大炭材料的孔径, 可有效降低离子水化对炭电极电容性能的影响.  相似文献   

7.
Theoretical calculations reveal that intrinsic pentagons in the basal plane can contribute to the local electronic redistribution and the contraction of band gap, making the carbon matrix possess superior binding affinity and electrochemical reactivity. To experimentally verify this, a pentagon‐defect‐rich carbon nanomaterial was constructed by means of in situ etching of fullerene molecules (C60). The electrochemical tests show that, relative to hexagons, such a carbon‐based material with abundant intrinsic pentagon defects makes much greater contribution to the electrocatalytic oxygen reduction activity and electric double layer capacitance. It shows a four‐electron‐reaction mechanism similar to commercial Pt/C and other transition‐metal‐based catalysts, and a higher specific capacitance than many reported metal‐free carbon materials. These results show the influence of intrinsic pentagon defects for developing carbon‐based nanomaterials toward energy conversion and storage devices.  相似文献   

8.
《中国化学会会志》2017,64(9):1058-1064
To reveal the nature of the interaction of the optical isomers of propranolol with the surface of carbon paste electrodes modified by uracil, we performed a combined computational and experimental study. Our study comprised the different modes of complexation between propranolol and uracil molecules covering the carbon paste electrode within two approaches: molecular dynamics simulation (MD ) and quantum mechanics (QM) modeling. A graphene layer was used as a model of the carbon paste electrode. The computations showed that uracil modification of the carbon paste electrode surface enhanced the selectivity toward the D‐isomer of propranolol as compared to the unmodified case. These theoretical results agree with our voltammetric measurements.  相似文献   

9.
《Electroanalysis》2017,29(4):1006-1013
The specific apparent capacitance (Farads per unit geometric area) of commercial carbon microdisc electrodes and in‐house fabricated carbon microcylinders is studied through the use of cyclic voltammetry. Home‐made microcylinder electrodes exhibit lower specific apparent capacitances and as a result facilitate lower limits of detection. We further demonstrate practically how the electroanalytical limit of the detection of solution phase trace oxygen is significantly improved using such microcylinder electrodes. Finally we show that after the degassing of a solution by nitrogen purging even in the most commonly encountered ‘best’ case scenarios approximately tens of μM of oxygen remain present in the electrochemical cell, unobservable by the commercial microdisc electrodes, but detectable with microcylinder electrodes, testifying to their analytical superiority.  相似文献   

10.
Differential capacitance curves for the electrical double layer (EDL) of mixtures of imidazolium-based ionic liquids (ILs) with a common cation (1-ethyl-3-methylimidazolium, [C2MIM]+) and two different anions (bis(trifuoromethylsulfonyl)imide, [Tf2N]) and tris(pentafluoroethyl)trifluorophosphate [FAP]) were obtained. Sharp peaks in the differential capacitance curves were observed for a small range of mixtures compositions at positive charge densities. The appearance and position on the potential scale of the peaks were found to be dependent on the mixture composition and temperature. The occurrence of these phenomena is interpreted as corresponding to an abrupt change in the EDL structure arrangement as a result of a complex interplay of electrostatic interactions and steric effects. The use of the non-structured mercury electrode allowed to decouple the eventual potential induced restructuring occurring at the double layer from the well-known surface reconstruction effects often reported for ionic liquids in contact with single crystal face electrodes.  相似文献   

11.
Electrochemical Capacitors   总被引:4,自引:0,他引:4  
The current literature sources on the electrochemical capacitors, which are divided into the film (dielectric), electrolytic, and supercapacitors, are reviewed. The supercapacitors are in turn subdivided into the double-layer capacitors, which use the EDL recharge on a highly-developed interfacial surface of electrodes; pseudocapacitors, where the charge is stored in a faradaic pseudocapacitance of sufficiently reversible redox reactions and the EDL capacitance; and hybrid capacitors, which employ a variety of electrodes. A macrokinetic theory of operation of double-layer capacitors is considered. Effect of various factors on the properties of electrodes utilized in supercapacitors is analyzed. A novel type of hybrid capacitor, which has a negative electrode of activated carbon cloth and a PbSO4/PbO2 positive electrode, is proposed. A theory of capillary equilibrium in hermetically sealed electrochemical capacitors is considered. Specific features of the application of voltammetric and impedance methods to studying electrochemical processes in supercapacitors are revealed. Characteristics of electrochemical capacitors and batteries are compared.  相似文献   

12.
噻吩衍生物是合成导电高分子材料的单体之一,在有机电致发光器件和电能存储等方面有着广泛的应用。聚3-(4-氟苯基)噻吩(PFPT)是一类既可进行p型掺杂又可进行n型掺杂的窄能带聚合物,在导电高分子型电化学电容器方面具有很好的应用前景,聚丙烯腈微孔膜已在锂离子电池方面有了很好的应用。若将它与碳纸复合后,再进行高温碳化和CO2活化,可制得导电性好、比表面积大的片状材料,作为电化学电容器的电极材料具有一定的双电层电容量.本文在三电极电解池中以这种材料的薄片为工作电极使3-(4-氟苯基)噻吩在乙腈溶液中进行电化学聚合,制备了聚3-(4-氟苯基)噻吩/碳化聚丙烯腈泡沫复合电极并研究了电极的电化学特性。  相似文献   

13.
Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.  相似文献   

14.
Electrochemical behavior of electrodes on the basis of CH900-20 activated carbon (AC) cloth has been studied in concentrated sulfuric acid solution. Cyclic voltammetric curves have been studied in the reversibility range (from 0.1 to 0.9 V RHE) and in the deep cathodic charging potential range (from –0.8 to 1 V RHE). It has been shown that electric double layer (EDL) charging occurs in the reversibility range, while faradaic processes of hydrogen intercalation into AC carbon take place in the range of negative potentials (←0.1 V). The intercalation process is governed by slow solid-phase hydrogen diffusion. The specific charge value grows at an increase in concentrated sulfuric acid solution. The mechanism of double intercalation of sulfuric acid and hydrogen into the AC material is suggested. On the basis of the reached specific discharge capacitance of 1,560 C/g (or 1,110 F/g) and Faraday's law, it has been concluded that the compound of C6H is formed in the limiting case of deepest cathodic charging. The obtained data have been used in a mathematical charge–discharge model for an AC electrode taking into account the EDL charging and the hydrogen intercalation. The galvanostatic recharge curves have been calculated in the diapason of currents by the developed model.  相似文献   

15.
The modelling of electrochemical processes often requires the solution of the Poisson‐Nernst‐Planck (PNP) equations. In complex geometries, such as porous electrodes, that is challenging due to the presence of disparate length scales, ranging from the Debye screening length (~nm) to the device length scale (~cm). To overcome this difficulty, one often assumes that the electric double layer (EDL) is at quasi‐equilibrium to construct a simplified model that accounts for ion diffusion in the electro‐neutral bulk of the electrolyte while replacing the EDLs with appropriate boundary conditions. Various researchers have demonstrated that such an approach is valid in the asymptotic limit of a thin EDL and moderate electrode potentials. In this note, we explore the range of validity of this approximation by considering a one‐dimensional electrolytic cell with blocking electrodes subjected to a step change and time‐periodic alternations in the electrodes’ potentials by calculating the errors associated with the approximate approach as functions of the EDL thickness and electric field frequency and intensity. Additionally, we delineate numerical instabilities associated with the numerical solutions of the bulk equations with the nonlinear boundary condition peculiar to this problem.  相似文献   

16.
推导了电化学体系中理想极化电极、电化学极化电极的复数电容表达式。根据这些表达式分析了上述体系的电容平面图 (Capacitance Plane Plot,CPP) ,利用 CPP可以方便地监测体系的电容值。用电子元件组成了上述体系的等效电路 ,测定了交流阻抗谱 ,得到了 CPP与理论推导一致。研究了金 /十八硫醇自组装膜的 CPP,根据 CPP讨论了金 /硫醇膜的组装过程及缺陷和组装时间的关系。  相似文献   

17.
Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom‐doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom‐doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom‐doped carbon consequently leads to more stored cations on the heteroatom‐doped carbon surface, thus yielding a boosted charge storage performance.  相似文献   

18.
Targeted construction of carbon defects near the N dopants is an intriguing but challenging way to boost the electrocatalytic activity of N-doped carbon toward oxygen reduction reaction (ORR). Here, we report a novel site-specific etching strategy that features targeted anchoring of singlet oxygen (1O2) on the N-adjacent atoms to directionally construct topological carbon defects neighboring the N dopants in N-doped carbon (1O2−N/C). This 1O2−N/C exhibits the highest ORR half-wave potential of 0.915 VRHE among all the reported metal-free carbon catalysts. Pyridinic-N bonded with a carbon pentagon of the neighboring topological carbon defects is identified as the primary active configuration, rendering enhanced adsorption of O2, optimized adsorption energy of the ORR intermediates, and a significantly decreased total energy barrier for ORR. This 1O2-induced site-specific etching strategy is also applicable to different precursors, showing a tremendous potential for targeted construction of high-efficiency active sites in carbon-based materials.  相似文献   

19.
利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管(CNTs), 再炭化处理制备氮掺杂碳纳米管(NCNTs).激光拉曼(Raman)光谱和X射线光电子谱(XPS)分析及透射电镜(TEM)观察表明, 苯胺包覆碳纳米管经炭化处理后, 得到以碳纳米管为核、氮掺杂碳层为壳, 具有核-壳结构的氮掺杂碳纳米管, 而碳纳米管本征结构未遭破坏. 研究表明, 随着苯胺用量的增大, 氮掺杂碳纳米管的氮掺杂碳层变厚, 氮含量从7.06%(质量分数)增加到8.64%, 而作为超级电容器电极材料, 随着氮掺杂碳层厚度降低, 氮掺杂碳纳米管在6 mol·L-1氢氧化钾电解液中的比容量从107 F·g-1增大到205 F·g-1, 远高于原始碳纳米管10 F·g-1的比容量, 且聚苯胺改性氮掺杂碳纳米管表现出较好的充放电循环性, 经1000次充放电循环后仍保持初始容量的92.8%~97.1%, 表明氮掺杂碳纳米管不仅通过表面氮杂原子引入大的法拉第电容和改善亲水性使电容量显著增大, 其具有的核壳结构特征也使循环稳定性增强。  相似文献   

20.
Herein, we report the design and synthesis of a series of novel cationic nitrogen‐doped nanographenes (CNDNs) with nonplanar geometry and axial chirality. Single‐crystal X‐ray analysis reveals helical and cove‐edged structures. Compared to their all‐carbon analogues, the frontier orbitals of the CNDNs are energetically lower lying, with a reduced optical energy gap and greater electron‐accepting behavior. Cyclic voltammetry shows all the derivatives to undergo quasireversible reductions. In situ spectroelectrochemical studies prove that, depending on the number of nitrogen dopants, either neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) are formed upon reduction. The concept of cationic nitrogen doping and introducing helicity into nanographenes paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons with cationic nitrogen dopants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号