首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total synthesis of mixed‐sequence alginate oligosaccharides, featuring both β‐D ‐mannuronic acid (M) and α‐L ‐guluronic acid (G), is reported for the first time. A set of GM, GMG, GMGM, GMGMG, GMGMGM, GMGMGMG, and GMGGMG alginates was assembled using GM building blocks, having a guluronic acid acceptor part and a mannuronic acid donor side to allow the fully stereoselective construction of the cis‐glycosidic linkages. It was found that the nature of the reducing‐end anomeric center, which is ten atoms away from the reacting alcohol group in the key disaccharide acceptor, had a tremendous effect on the efficiency with which the building blocks were united. This chiral center determines the overall shape of the acceptor and it is revealed that the conformational flexibility of the acceptor is an all‐important factor in determining the outcome of a glycosylation reaction.  相似文献   

2.
A scalable approach towards high‐yielding and (stereo)selective glycosyl donors of the 2‐ulosonic acid Kdo (3‐deoxy‐D ‐manno‐oct‐2‐ulosonic acid) is a fundamental requirement for the development of vaccines against Gram‐negative bacteria. Herein, we disclose a short synthetic route to 3‐iodo Kdo fluoride donors from Kdo glycal esters that enable efficient α‐specific glycosylations and significantly suppress the elimination side reaction. The potency of these donors is demonstrated in a straightforward, six‐step synthesis of a branched Chlamydia‐related Kdo‐trisaccharide ligand without the need for protecting groups at the Kdo glycosyl acceptor. The approach was further extended to include sequential iteration of the basic concept to produce the linear Chlamydia‐specific α‐Kdo‐(2→8)‐α‐Kdo‐(2→4)‐α‐Kdo trisaccharide in a good overall yield.  相似文献   

3.
New glycosyl donors have been developed that contained several para‐substituted O‐aryl protecting groups and their stereoselectivity for the glycosylation reaction was evaluated. A highly β‐selective glycosylation reaction was achieved by using thioglycosides that were protected by 4‐nitrophenyl (NP) groups, which were introduced by using the corresponding diaryliodonium triflate. Analysis of the stereoselectivities of several glycosyl donors indicated that the β‐glycosides were obtained through an SN2‐type displacement from the corresponding α‐glycosyl triflate. The NP group could be removed by reduction of the nitro group and acylation, followed by oxidation with ceric ammonium nitrate (CAN).  相似文献   

4.
C‐Glycosides are both a common motif in many bioactive natural products and important glycoside mimetics. We demonstrate that activating a hemiacetal with a sulfonyl chloride, followed by treating the resultant glycosyl sulfonate with an enolate results in the stereospecific construction of β‐linked C‐glycosides. This reaction tolerates a range of acceptors and donors, including disaccharides. The resulting products can be readily derivatized into C‐glycoside analogues of β‐glycoconjugates, including C‐disaccharide mimetics.  相似文献   

5.
Regioselective and 1,2‐cis‐α‐stereoselective glycosylations using 1α,2α‐anhydro glycosyl donors and diol glycosyl acceptors in the presence of a glycosyl‐acceptor‐derived boronic ester catalyst. The reactions proceed smoothly to give the corresponding 1,2‐cis‐α‐glycosides with high stereo‐ and regioselectivities in high yields without any further additives under mild reaction conditions. In addition, the present glycosylation method was successfully applied to the synthesis of an isoflavone glycoside.  相似文献   

6.
7.
β‐Aminoalkylboronic acids are bioisosteres of the pharmaceutically important class of β‐amino acids but few stereoselective methods exist for their preparation. The 1,2‐addition of lithiated 1,1‐diborylalkanes onto chiral Ntert‐butanesulfinyl aldimines produces β‐sulfinimido gem‐bis(boronates) in good to excellent yields with high diastereoselectivity. The optimized conditions involve the use of rubidium fluoride and water, and are compatible with functionalized alkyl, aryl, alkenyl, and alkynyl substituents. Under these conditions, the geminal quaternary alkyl bis(pinacolatoboryl) intermediates undergo a highly diastereoselective monoprotodeboronation to afford a wide range of syn‐α,β‐disubstituted β‐aminoalkylboronates. This novel application of protodeboronation chemistry was shown to result from a kinetically controlled, diastereotopic‐group‐selective B?C bond protolysis dictated by the configuration of the adjacent stereogenic C?N center. Facile acidic cleavage of the sulfinimide auxiliary produces the free aminoboronates with high enantiomeric purity.  相似文献   

8.
Validation of the 2‐fluoro substituent as an inert steering group to control chemical glycosylation is presented. A molecular editing study has revealed that the exceptional levels of diastereocontrol in glycosylation processes by using 2‐fluoro‐3,4,6‐tri‐O‐benzyl glucopyranosyl trichloroacetimidate (TCA) scaffolds are a consequence of the 2R,3S,4S stereotriad. This study has also revealed that epimerization at C4, results in a substantial enhancement in β‐selectivity (up to β/α 300:1).  相似文献   

9.
This study develops an operationally easy, efficient, and general 1,2‐trans β‐selective glycosylation reaction that proceeds in the absence of a C2 acyl function. This process employs chemically stable thioglycosyl donors and low substrate concentrations to achieve excellent β‐selectivities in glycosylation reactions. This method is widely applicable to a range of glycosyl substrates irrespective of their structures and hydroxyl‐protecting functions. This low‐concentration 1,2‐trans β‐selective glycosylation in carbohydrate chemistry removes the restriction of using highly reactive thioglycosides to construct 1,2‐trans β‐glycosidic bonds. This is beneficial to the design of new strategies for oligosaccharide synthesis, as illustrated in the preparation of the biologically relevant β‐(1→6)‐glucan trisaccharide, β‐linked Gb3 and isoGb3 derivatives.  相似文献   

10.
The synthesis of linear‐ and (1→6)‐branched β‐(1→4)‐d ‐galactans, side‐chains of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative couplings of n‐pentenyl disaccharides followed by a late stage glycosylation of a common hexasaccharide core. Reaction with a covalent linker and immobilization on N‐hydroxysuccinimide (NHS)‐modified glass surfaces allows the generation of carbohydrate microarrays. The glycan arrays enable the study of protein–carbohydrate interactions in a high‐throughput fashion, demonstrated herein with binding studies of mAbs and a CBM.  相似文献   

11.
12.
13.
14.
A Hydrogen bond mediated aglycone delivery (HAD) method was applied to the synthesis of α‐glucans, which are abundant in nature, but as targets represent a notable challenge to chemists. The synthesis of linear oligosaccharide sequences was accomplished in complete stereoselectivity in all glycosylations. The efficacy of HAD may diminish with the increased bulk of the glycosyl acceptor, and may be an important factor for the syntheses of oligomers beyond pentasaccharides. The synthesis of a branched structure proved more challenging, particularly with bulky trisaccharide acceptors.  相似文献   

15.
Galactosaminogalactan (GAG) is a prominent cell wall component of the opportunistic fungal pathogen Aspergillus fumigatus. GAG is a heteropolysaccharide composed of α‐1,4‐linked galactose, galactosamine and N‐acetylgalactosamine residues. To enable biochemical studies, a library of GAG‐fragments was constructed featuring specimens containing α‐galactose‐, α‐galactosamine and α‐N‐acetyl galactosamine linkages. Key features of the synthetic strategy include the use of di‐tert‐butylsilylidene directed α‐galactosylation methodology and regioselective benzoylation reactions using benzoyl‐hydroxybenzotriazole (Bz‐OBt). Structural analysis of the Gal, GalN and GalNAc oligomers by a combination of NMR and MD approaches revealed that the oligomers adopt an elongated, almost straight, structure, stabilized by inter‐residue H‐bonds, one of which is a non‐conventional C?H???O hydrogen bond between H5 of the residue (i+1) and O3 of the residue (i). The structures position the C‐2 substituents almost perpendicular to the oligosaccharide main chain axis, pointing to the bulk solvent and available for interactions with antibodies or other binding partners.  相似文献   

16.
Direct dehydrative α‐alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst‐free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one‐pot manner and on a large scale by C?C bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein–Pondorf–Verley–Oppenauer‐type redox processes.  相似文献   

17.
Low‐temperature electrochemical oxidation of thioglycosides gave glycosyl triflates from which glycosyl sulfonium ions were produced (see scheme). The latter were characterized by NMR spectroscopy and cold‐spray mass spectrometry as a mixture of α‐ and β‐isomers (45:55). The α‐glycosyl sulfonium ion exhibited higher reactivity than the β‐glycosyl sulfonium ion in the reaction with methanol, which gave a mixture of α‐ and β‐methyl glycosides (41:59).

  相似文献   


18.
19.
Human lung epithelial cells natively offer terminal N‐acetylneuraminic acid (Neu5Ac) α(2→6)‐linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N‐Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one‐pot assembly and divergent transformation. The sugar assembly made use of an N‐phthaloyl‐protected sialyl imidate for chemoselective activation and α‐stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc‐capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.  相似文献   

20.
A concise approach to a Neu5Ac‐α‐2,3‐LacNPhth trisaccharide derivative was developed. First, the regio/stereoselective glycosylation between glycoside donors and glucoNPhth diol acceptors was investigated. It was found that the regioselectivity depends not only on the steric hindrance of the C2‐NPhth group and the C6‐OH protecting group of the glucosamine acceptors, but also on the leaving group and protecting group of the glycoside donors. Under optimized conditions, LacNPhth derivatives were synthesized in up to 92 % yield through a regio/stereoselective glycosylation between peracetylated‐α‐galactopyranosyl trichloroacetimidate and p‐methoxyphenyl 6‐Otert‐butyldiphenylsilyl‐2‐deoxy‐2‐phthalimido‐β‐d ‐glucopyranoside, avoiding the formation of glycosylated orthoesters and anomeric aglycon transfer. Then, the LacNPhth derivative was deacylated and then protected on the primary position by TBDPS to form a LacNPhth polyol acceptor. Finally, the Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in 48 % yield through the regio/stereoselective glycosylation between the LacNPhth polyol acceptor and a sialyl phosphite donor. Starting from d ‐glucosamine hydrochloride, the target Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in a total yield of 18.5 % over only 10 steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号