首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The in vitro stability, under freeze–thawing procedures, and in vivo degradation, in rat spleen, of two types of polymerized liposomes were examined: 1,2‐bis‐[2E, ­4E) ‐ octadecadienoyl] ‐ sn ‐ glycero ‐ 3 ‐ phosphocholine (DODPC) and 1‐acyl‐2‐[(2E, 4E)‐octadecadienoyl]‐sn‐glycero‐3‐phosphocholine (AODPC) were used as polymerizable phospholipids. The lipid composition of the liposomes was prepared as DODPC/Chol/SA (Chol = cholesterol, SA = stearicacid), AODPC/Chol/SA (7/7/2 by molar ratio), AODPC/DPPC/Chol/SA (3.5/3.5/7/2 by molar ratio). The liposomes were extruded through a 0.2 µm polycarbonate‐ filter to obtain the approximate particle size of 0.2 µm, and then irradiated with γ‐rays. Hemoglobin‐encapsulated liposomes were also prepared in the same manner with concentrated hemoglobin (Hb) solution. The DODPC/Chol/SA liposome exhibited no trace of particle size change nor Hb leakage. Although not as excellent as the former, the AODPC‐base liposome showed slightly diameter change (below 7.5%) with a substantial abatement of Hb leakage (<3.5%). Transmission electron microscopy observation of spleens also revealed more efficient degradability with AODPC/DPPC/Chol/SA liposome than with DODPC/Chol/SA liposome. Hb‐encapsulated AODPC/DPPC/Chol/SA liposome, after five freeze–thawing cycles, attained an Hb leakage below 3.5% with a particle size change of 0.7–7.5%, and reduced the spleen retention compared with the DODPC‐base liposome. These results suggest that AODPC/DPPC/Chol/SA liposome can be used as a long‐term preservable blood substitute. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The hitherto unknown 5‐(2‐aryl‐2‐oxoethyl)‐4‐oxo‐1,3‐thiazolidines 1a‐l have been synthesized viacycloaddition process between thiourea and/or its derivatives with 3‐aroylpropenoic acids. 1H NMR spectra revealed the presence of 1a‐c as a tautmeric mixture. The presence of the thiazoline tautmers (1a‐c) ′ was confirmed by methylating the tautmeric mixture, to the respective methylated derivatives 2‐N‐methylanilino‐5‐(2‐aryl‐2‐oxoethyl)‐4‐oxo‐1,3‐thiazolines 2a‐c and 1g‐i . Acidic treatment of 1 provided the respective 2‐oxo homologues 3a‐i . When 1a‐d , k were refluxed with DMF, molecular rearrangement was achieved, providing the 4‐oxo‐2‐thioxoimidazolidine isomers 4a‐d , k . Bromination of 4a and 4d in hot acetic acid afforded the respective (E,Z)‐5‐benzoylmethylene derivatives 5a,d which were prepared authentically. Thiation of 1a‐c and 4a‐c gave 5‐aryl‐2,3‐dihydro‐2‐phenyliminothieno[2,3‐d]thiazoles 6a‐c and 1‐phenyl‐5‐aryl‐2,3‐dihydro‐2‐thioxothieno[2,3‐d]imidazoles 7a‐c , respectively. The proposed structures have been confirmed by elemental analysis and spectroscopic data. The selected products showed different antimicrobial effect.  相似文献   

3.
Talatisamine ( 1 ) is a member of the C19‐diterpenoid alkaloid family, and exhibits K+ channel inhibitory and antiarrhythmic activities. The formidable synthetic challenge that 1 presents is due to its highly oxidized and intricately fused hexacyclic 6/7/5/6/6/5‐membered‐ring structure (ABCDEF‐ring) with 12 contiguous stereocenters. Here we report an efficient synthetic route to 1 by the assembly of two structurally simple fragments, chiral 6/6‐membered AE‐ring 7 and aromatic 6‐membered D‐ring 6 . AE‐ring 7 was constructed from 2‐cyclohexenone ( 8 ) through fusing an N‐ethylpiperidine ring by a double Mannich reaction. After coupling 6 with 7 , an oxidative dearomatization/Diels–Alder reaction sequence generated fused pentacycle 4 b . The newly formed 6/6‐membered ring system was then stereospecifically reorganized into the 7/5‐membered BC‐ring of 3 via a Wagner–Meerwein rearrangement. Finally, Hg(OAc)2 induced an oxidative aza‐Prins cyclization of 2 , thereby forging the remaining 5‐membered F‐ring. The total synthesis of 1 was thus accomplished by optimizing and orchestrating 33 transformations from 8 .  相似文献   

4.
A phenolic OH‐containing benzoxazine ( F‐ap ), which cannot be directly synthesized from the condensation of bisphenol F, aminophenol, and formaldehyde by traditional procedures, has been successfully prepared in our alternative synthetic approach. F‐ap was prepared by three steps including (a) condensation of 4‐aminophenol and 5,5'‐methylenebis(2‐hydroxybenzaldehyde) (1) , (b) reduction of the resulting imine linkage by sodium borohydride, and (c) ring closure condensation by formaldehyde. The key starting material, (1) , was prepared from 2‐hydroxybenzaldehyde and s‐trioxane in the presence of sulfuric acid. F‐ap is structurally similar to bis(3,4‐dihydro‐2H‐3‐phenyl‐1,3‐benzoxazinyl)methane ( F‐a, a commercial benzoxazine based on bisphenol F/aniline/formaldehyde) except for two phenolic OHs. The phenolic OHs can provide reaction sites with epoxy and 1,1'‐(methylenedi‐p‐phenylene)bismaleimide (BMI). The structure–property relationships between the thermosets of F‐ap /epoxy, F‐a /epoxy, F‐ap /BMI, and F‐a /BMI were discussed. Experimental data showed that thermosets based on F‐ap /epoxy and F‐ap /BMI provided much better thermal properties than those based on F‐a /epoxy and F‐a /BMI. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2686–2694  相似文献   

5.
The performance of a blue polymer light‐emitting diodes (PLED) was significantly improved by doping a controlled amount (<1%) of a hole transport molecule N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4″‐diamine (NPB) into the emitting layer. Hole carrier mobility of the blue emitting polymer, BP105 (trade name of The Dow Chemicals Co.), increased from 5.27 × 10‐7 cm‐2/Vs of the pristine BP105 to 1.80 × 10‐6 cm‐2/Vs with the addition of 1% NPB in BP105. The enhanced carrier mobility greatly promoted performance of a blue PLED device with a device structure of ITO/PEDOT:PSS/BP105+x% NPB/LiF/Ca/Al. Luminance increased from 573 cd/m2 to 2,720 cd/m2 at 6V and efficiency increased from 1.1 lm/W to 1.6 lm/W at 1,000 cd/m2 with 1% NPB in BP105. The most important improvement was an increase in the lifetime of the blue device from 80 to 120 hours at an initial luminance of 400 cd/m2. We found that by choosing the appropriate dopant with good energy alignment and controlled dopant concentration, the performance of a blue PLED device could be greatly improved.  相似文献   

6.
The synthesis and structural properties of two kinds of thiosemicarbazide derivatives ( 2a‐c and 3a‐c ) and one kind of semicarbazide derivatives ( 4a, 4b ) have been described. These compounds were synthesized by treating 2‐(4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl)acetohydrazides ( 1a‐c ) with benzyl isothiocyanate, 3‐florophenyl isothiocyanate and benzylisocyanate, respectively. The synthesis of 4‐amino‐3‐alkyl‐1‐[(4‐alkyl‐5‐mercapto(or 5‐oxo)‐4H‐1,2,4‐triazol‐3‐yl)methyl]‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ones ( 5a‐c, 6a‐c and 7 ) have been performed from the reaction with sodium hydroxide. On the other hand, the acidic treatment of compounds 2b, 3b and 4b has afforded 4‐amino‐3‐(4‐chlorobenzyl)‐1‐[(5‐alkylamino‐1,3,4‐thidazol(or 1,3,4‐oxazol)‐2‐yl)methyl]‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ones ( 8, 9 and 10 ). The condensation of thiosemi(or semi)carbazide derivatives ( 2a‐c, 3c and 4b ) with 4‐chlorophenacylbromide have resulted in the formation of 2‐[4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl]‐N′‐(3,4‐dialkyl‐1,3‐thiazol(or oxazol)‐2(3H)‐yliden]acetohydrazides ( 11a‐c, 12, 13 ), while their condensation with chloroacetic acid has produced 2‐[4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl]‐N′‐[3‐(3‐alkyl)]‐4‐oxo‐1,3‐thiazolidin(or oxazolidin)‐2‐yliden}acetohydrazides ( 14, 15 and 16 ). The spectral data and elemental analyses have support the proposed structures.  相似文献   

7.
The 1,3‐dipolar cycloaddition of an azomethine ylide generated by a decarboxylative route from sarcosine and isatin to 1‐benzyl‐3,5‐diarylmethylidene‐piperidin‐4‐ones afforded novel di‐spiro‐indolo/pyrrolidino/piperidines in moderate yields. Further cycloaddition of these di‐spiro compounds to nitrile oxide afforded tri‐spiro‐indolo/pyrrolidino/piperadino/isoxazolines in moderate yields with high regio‐ and stereoselectivity.  相似文献   

8.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

9.
The influence of nanoclay on the morphology and properties of the polypropylene (PP)/ethylene–octene block copolymer (EOC) blend with double compatibilizers of maleated PP (PP‐g‐MA) and maleated EOC (EOC‐g‐MA) was investigated and compared with the nanocomposites containing either PP‐g‐MA or EOC‐g‐MA as a compatibilizer. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized for morphological characterization in conjunction with dynamic mechanical thermal analysis, mechanical testing, and rheological evaluation of these nanocomposites. The results suggested that in the nanocomposite including both compatibilizers of PP‐g‐MA and EOC‐g‐MA, clay was dispersed as a mixed structure of intercalation and exfoliation in both phases of the polymer blend. Comparing the mechanical properties of the studied nanocomposite with nanocomposites of PP/EOC/PP‐g‐MA/clay and PP/EOC/EOC‐g‐MA/clay also indicated that the nanocomposite containing mixed compatibilizers displayed higher tensile modulus, tensile strength, and complex viscosity because of the better dispersion of clay in both phases. The results also confirmed the increased structural stability and reduced dispersed phase size of PP/EOC/PP‐g‐MA/EOC‐g‐MA blend in the presence of clay that proposed the compatibilization role of clay in this nanocomposite. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A series of novel methylene‐bis‐pyrimidinyl‐spiro‐4‐thiazolidinones 6a‐h have been synthesized by cyclocondensation of thioglycolic acid with methylene‐bis‐(N‐cyclohexylidene‐N‐pyrimidine) 5a‐h , which in turn have been prepared by the reaction of cyclohexanone with methylene‐bis‐2‐aminopyrimidines 4a‐h , which are prepared by the reaction of guanidine hydrochloride with methylene‐bis‐chalcones 3a‐h . The compounds 3a‐h have been synthesized by the reaction of 5‐(3‐formyl‐4‐hydroxybenzyl)‐2‐hydroxybenzaldehyde 2 with various acetophenones in presence of KOH. The compound 2 is prepared by the reported method. The structures of the compounds synthesized have been confirmed by their elemental analysis and spectral data. Their antibacterial and antifungal activities have also been evaluated.  相似文献   

11.
Polyethylene‐g‐polystyrene (PE‐g‐PS) was synthesized as a compatibilizer for polypropylene/polystyrene­(PP/PS) blends by the living radical polymerization of styrene with polyethylene‐co‐glycidylmethacrylate (PE‐co‐GMA). The compatibilizer effect of PE‐g‐PS on the morphology and thermal properties of PP/PS blends was investigated. The crystalline temperature of PP in PP/PS blends decreased with increasing PE‐g‐PS contents. Morphologies of PP/PE‐g‐PS/PS blends showed much better dispersion of each domain for higher PE‐g‐PS contents. The molecular weight of PS segment in PP/PE‐g‐PS/PS blend was increased by addition of styrene monomer during the post melt blending process where post living radical polymerization reaction proceeded. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Four series of substituted furan and pyrrole have been synthesized. The first series was prepared by cyclization of the key intermediates ethyl 5‐[(4‐substituted thiosemicarbazido)methyl]‐2‐methylfuran‐3‐carboxylates 2a‐2d and 1‐[(4‐acetyl‐5‐methyl‐1H‐pyrrol‐2‐yl)methylene]‐4‐substituted thiosemicarbazides 8a‐8d with chloroacetic acid or (ethyl bromoacetate) to afford the corresponding 4‐oxo‐3‐substituted thiazolidin‐2‐ylidene 3a‐3d or 3‐substituted thiazolidin‐4‐one 9a‐9d . On the other hand, heating of the intermediates 2a‐2d or 8a‐8d with acetic anhydride afforded the corresponding (N‐substituted acetylamino)‐2,3‐dihydro‐[1,3,4]thiadiazol‐2‐yl derivatives 4a‐4d and [1,3,4]thiadiazol‐2‐yl‐N‐substituted acetamide 10a‐10d respectively, while cyclization with p‐bromophenacyl bromide gave rise to the corresponding 3‐substituted thiazol‐2‐yl‐ylidene 5a‐5d and 11a‐11d respectively. Furthermore, 4‐oxo‐3‐substituted thioureido‐thiazolidin‐2‐yl 6a‐6d or 4‐oxo‐thiazolidin‐3‐yl‐3‐substituted thiourea 12a‐12d were obtained by reaction of the intermediates 2a‐2d or 8a‐8d with thioglycolic acid. Some of the synthesized compounds showed promising antimicrobial activities.  相似文献   

13.
We synthesized a novel epoxy (dopotep) and cyanate ester (dopotcy) based on a phosphorus‐containing triphenol (dopotriol). The proposed structures were confirmed by IR, mass spectra, NMR spectra, and epoxy‐equivalent‐weight titration. The synthesized dopotep or dopotcy was copolymerized with diglycidyl ether of bisphenol A (DGEBA), 6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a), or dicyanate ester of bisphenol A (BADCY). Thus, copolymers based on DGEBA/dopotep/diphenylmethane (ddm), F‐a/dopotep, BADCY/dopotcy, and DGEBA/dopotcy were developed. The thermal properties, dielectric properties, and flame retardancy of these copolymers were investigated. The curing kinetics of dopotep/ddm and dopotep/diamino diphenylsulfone were studied with differential scanning calorimetry. The microstructure of DGEBA/dopotcy was studied with IR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3487–3502, 2006  相似文献   

14.
Random and block copolymerizations of L ‐ or D ‐lactide with ε‐caprolactone (CL) were performed with a novel anionic initiator, (C5Me5)2SmMe(THF), and they resulted in partial epimerization, generating D ,L ‐ or meso‐lactide polymers with enhanced biodegradability. A blend of PLLA‐r‐PCL [82/18; PLLA = poly(L ‐LA) and PCL = poly(ε‐caprolactone)] and PDLA‐r‐PCL [79/21; PDLA = poly(D ‐LA)] prepared by the solution‐casting method generated a stereocomplex, the melting temperature of which was about 40 °C higher than that of the nonblended copolymers. A blend of PLLA‐b‐PCL (85/15) and PDLA‐b‐PCL (82/18) showed a lower elongation at break and a remarkably higher tensile modulus than stereocomplexes of PLLA‐r‐PCL/PDLA‐r‐PCL and PLLA/PDLA. The biodegradability of a blend of PLLA‐r‐PCL (65/35) and PDLA‐r‐PCL (66/34) with proteinase K was higher than that of PLLA‐b‐PCL (47/53) and PDLA‐b‐PCL (45/55), the degradability of which was higher than that of a PLLA/PDLA blend. A blend film of PLLA‐r‐PDLLA (69/31)/PDLA‐r‐PDLLA (68/32) exhibited higher degradability than a film of PLLA/PDLLA [PDLLA = poly(D ,L ‐LA)]. A stereocomplex of PLLA‐r‐PCL‐r‐PDMO [80/18/2; PDMO = poly(L ‐3,D ,L ‐6‐dimethyl‐2,5‐morpholinedion)] with PDLA‐r‐PCL‐r‐PDMO (81/17/2) showed higher degradability than PLLA‐r‐PDMO (98/2)/PDLA‐r‐PDMO (98/2) and PLLA‐r‐PCL (82/18)/PDLA‐r‐PCL (79/21) blends. The tensile modulus of a blend of PLLA‐r‐PCL‐r‐PDMO and PDLA‐r‐PCL‐r‐PDMO was much higher than that of a blend of PLLA‐r‐PDMO and PDLA‐r‐PDMO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 438–454, 2005  相似文献   

15.
Polyurethane/organically modified montmorillonite (PU/O‐MMT) nanocomposites were electrospun and the effect of O‐MMT on the morphology and physical properties of the PU/O‐MMT nanofiber mats were investigated for the first time. The average diameters of the PU/O‐MMT nanofibers were ranged from 150 to 410 nm. The conductivities of the PU/O‐MMT solutions were linearly increased with increasing the content of O‐MMT, which caused a decrease in the average diameters of the PU/O‐MMT nanofibers. The as‐electrospun PU and PU/O‐MMT nanofibers were not microphase separated. The exfoliated MMT layers were well distributed within the PU/O‐MMT nanofibers and oriented along the fiber axis. When the PU/O‐MMT nanofibers were annealed, the exfoliated MMT layers hindered the microphase separation of the PU. The electrospinning of PU/O‐MMT nanocomposites resulted in PU nanofiber mats with improved Young's modulus and tensile strength. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3171–3177, 2005  相似文献   

16.
Summary: The MADIX/RAFT mechanism, employing a xanthate as the reversible chain‐transfer agent, has been shown to facilitate the living radical polymerization of vinyl acetate in miniemulsion. Methyl (ethoxycarbonothioyl)sulfanyl acetate (MESA) successfully mediated the polymerization which was initiated with either of the water‐soluble initiators 2,2′‐azobis{2‐[1‐(2‐hydroxyethyl)‐2‐imidazolin‐2‐yl]propane} dihydrochloride (VA‐060) or 2,2′‐azobis[2‐(2‐dimidazolin‐2‐yl)propane] dihydrochloride (VA‐044). The polymerizations exhibit living characteristics, demonstrated by the evolution of molecular weight distributions. The formulation of the miniemulsion produced stable latexes with no coagulum.

The number‐average molecular weight and PDI as a function of monomer conversion for the RAFT miniemulsion polymerization of vinyl acetate.  相似文献   


17.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

18.
Reaction of alkaline benzenearsonous and 2,3‐dihydroxypropylarsonous acids with rac‐glycidol affords the corresponding arsinic acids, which after reduction with thiophenol are acylated with either fatty‐acid chlorides/pyridine or fatty acids/dicyclohexylcarbodiimide/4‐dimethylaminopyridine and oxidized with hydrogen peroxide to give the arsinolipids (rac‐2,3‐diacyloxypropyl)phenylarsinic and bis‐(rac‐2,3‐diacyloxypropyl)arsinic acids. The latter is a non‐isosteric analogue of bisphosphatidic acid. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

20.
The carbon–silica dual phase filler (CSDPF) was modified by bis (3‐triethoxy‐silylpropyl) tetrasulphane (Si69) and 1‐allyl‐3‐methyl‐imidazolium chloride (AMI), respectively. The natural rubber (NR) vulcanizates filled with modified CSDPF were fabricated through mechanical mixing followed by a high‐temperature cure process. The impacts of filler surface modification on the curing characters, crosslinked junctions, network structure, and mechanical properties of NR vulcanizates were investigated. The results showed that the Si69 interacted with CSDPF through covalent bond, while the interaction between AMI and CSDPF was hydrogen bond. Both modifications increased the cure rate of CSDPF/NR compounds as well as the crosslinked degree, compared with those of pristine CSDPF/NR compound. The modifications improved the dispersion of CSDPF in NR matrix. The covalent modification by Si69 caused a limited movement of NR chains in the CSDPF surface, which contributed to a greater tensile modulus of Si69‐modified CSDPF/NR. However, the higher content of mono‐sulfidic crosslink and the poorer content of strain‐induced crystallization in the NR matrix led to a slight increase of tensile strength and tear strength of Si69‐modified CSDPF/NR, compared with those of CSDPF/NR. The tensile modulus of AMI‐modified CSDPF/NR had a lower value due to a faster polymer chain motion on the CSDPF surface. However, the tensile and tear strength of AMI‐modified CSDPF/NR increased significantly because of the increase of mono‐sulfidic crosslink, strain‐induced crystallization, and the existed hydrogen bond between CSDPF and NR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号