首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Pressing the configurational switch : Use of enantiomeric Ir catalysts allows the vinylpiperidine building blocks 2 a and 2 b to be synthesized with high selectivity. Total syntheses of the dendrobate alkaloid (+)‐241 D, its C6‐epimer, and a spruce alkaloid are presented as applications.

  相似文献   


3.
We report an efficient and highly stereoselective strategy for the synthesis of Aspidosperma alkaloids based on the transannular cyclization of a chiral lactam precursor. Three new stereocenters are formed in this key step with excellent diastereoselectivity due to the conformational bias of the cyclization precursor, leading to a versatile pentacyclic intermediate. A subsequent stereoselective epoxidation followed by a mild formamide reduction enabled the first total synthesis of the Aspidosperma alkaloids (?)‐mehranine and (+)‐(6S,7S)‐dihydroxy‐N‐methylaspidospermidine. A late‐stage dimerization of (?)‐mehranine mediated by scandium trifluoromethanesulfonate completed the first total synthesis of (?)‐methylenebismehranine.  相似文献   

4.
A method for the stereoselective synthesis of 2,6‐disubstituted piperidines has been developed that is based on the use of an intramolecular iridium‐catalyzed allylic substitution as a configurational switch. The procedure allows the preparation of 2‐vinylpiperidines with enantiomeric excesses (ee) of greater than 99 %. As applications, total syntheses of piperidine alkaloids have been elaborated, most often by using Ru‐catalyzed cross‐metatheses as a key step for introduction of a side chain. Asymmetric total syntheses of the prosopis alkaloids (+)‐prosopinine, (+)‐prosophylline, (+)‐prosopine, and of the dendrobate alkaloid (+)‐241D and its C6 epimer are described.  相似文献   

5.
(?)‐Daphnilongeranin B and (?)‐daphenylline are two hexacyclic Daphniphyllum alkaloids, each containing a complex cagelike backbone. Described herein are the first asymmetric total synthesis of (?)‐daphnilongeranin B and a bioinspired synthesis of (?)‐daphenylline with an unusual E ring embedded in a cagelike framework. The key features include an intermolecular [3+2] cycloaddition, a late‐stage aldol cyclization to install the F ring of daphnilongeranin B, and a bioinspired cationic rearrangement leading to the tetrasubstituted benzene ring of daphenylline.  相似文献   

6.
The first enantioselective total synthesis of (?)‐aspidophylline A, including assignment of its absolute configuration has been accomplished. A key element of the synthesis is a highly enantioselective indole allylic alkylation/iminium cyclization cascade which was developed by employing a combination of Lewis acid activation and an iridium/ligand catalyst. This strategy relies on the direct use of 2,3‐disubstituted indoles with secondary allylic alcohols appended at C2 and heteronucleophiles appended at C3, indoles which are easily prepared from simple starting materials under C?H activation conditions.  相似文献   

7.
The enantioselective stereocontrolled total synthesis of aspidophytine is described. The key indole intermediate was prepared by radical cyclization of 2-alkenylphenylisocyanide, followed by Sonogashira-coupling with a highly functionalized terminal acetylene. The 11-membered cyclic amine, a precursor for the formation of the aspidosperma skeleton, was synthesized using nitrobenzenesulfonamide chemistry. After construction of the pentacyclic skeleton, the lactone ring was formed to complete the total synthesis.  相似文献   

8.
Divergent total syntheses of the enmein‐type natural products (?)‐enmein, (?)‐isodocarpin, and (?)‐sculponin R have been achieved in a concise fashion. Key features of the strategy include 1) an efficient early‐stage cage formation to control succeeding diastereoselectivity, 2) a one‐pot acylation/akylation/lactonization to construct the C‐ring and C8 quarternary center, 3) a reductive alkenylation approach to construct the enmain D/E rings and 4) a flexible route to allow divergent syntheses of three natural products.  相似文献   

9.
A series of bioinspired transformations that are applied to convert strictosidine aglycones into monoterpenoid indole alkaloids is reported. The highly reactive key intermediates, strictosidine aglycones, were prepared in situ by simple removal of a silyl protecting group from the silyl ether derivatives, and converted selectively via bioinspired transformations under substrate control into heteroyohimbine- and corynantheine-type, and akagerine and naucleaoral related alkaloids. Thus, concise, divergent total syntheses of 13 monoterpenoid indole alkaloids, (−)-cathenamine, (−)-tetrahydroalstonine, (+)-dihydrocorynantheine, (−)-corynantheidine, (−)-akagerine, (−)-dihydrocycloakagerine, (−)-naucleaoral B, (+)-naucleidinal, (−)-naucleofficines D and III, (−)-nauclefiline, and (−)-naucleamides A and E, were accomplished in fewer than 13 steps.  相似文献   

10.
A collective synthesis of glycosylated monoterpenoid indole alkaloids is reported. A highly diastereoselective Pictet–Spengler reaction with α‐cyanotryptamine and secologanin tetraacetate as substrates, followed by a reductive decyanation reaction, was developed for the synthesis of (?)‐strictosidine, which is an important intermediate in biosynthesis. This two‐step chemical method was established as an alternative to the biosynthetically employed strictosidine synthase. Furthermore, after carrying out chemical and computational studies, a transition state for induction of diastereoselectivity in our newly discovered Pictet–Spengler reaction is proposed. Having achieved the first enantioselective total synthesis of (?)‐strictosidine in just 10 steps, subsequent bioinspired transformations resulted in the concise total syntheses of (?)‐strictosamide, (?)‐neonaucleoside A, (?)‐cymoside, and (?)‐3α‐dihydrocadambine.  相似文献   

11.
12.
The gold(I) complex catalyzed cycloisomerization and skeletal rearrangement of 1,n‐enynes (n=5–7) is a powerful methodology for the efficient synthesis of complex molecular architectures. In contrast to 1,6‐enynes, readily accessible homologous 1,7‐enynes are largely unexplored in such transformations. Here, the divergent skeletal rearrangement of all‐carbon 1,7‐enynes by catalysis with a cationic gold(I) complex is reported. Depending on electronic and steric factors, differently substituted 1,7‐enynes react via different carbocations formed from a common gold carbene intermediate to yield on the one hand novel exocyclic allenes and on the other hand tricyclic hexahydro‐anthracenes through a novel dehydrogenative Diels–Alder reaction.  相似文献   

13.
14.
15.
The remarkable biological activities of polyprenylated polycyclic acylphloroglucinols (PPAPs) combined with their highly decorated bicyclo[3.3.1]nonane‐2,4,9‐trione frameworks have inspired synthetic organic chemists over the last decade. The concise total syntheses of four natural products PPAPs; hyperforin and papuaforins A–C, and the formal synthesis of nemorosone are reported. Key to the realization of this strategy is the short and scalable synthesis of densely substituted PPAP scaffolds through a gold(I)‐catalyzed 6endo‐dig carbocyclization of cyclic enol ethers for late‐stage functionalization.  相似文献   

16.
A concise synthesis of the biologically active alkaloid berberine is reported, and a versatile palladium‐catalyzed enolate arylation is used to form the isoquinoline core. The overall yield of 50 % is a large improvement over the single, previous synthesis. By design, this modular route allows the rapid synthesis of other members of the protoberberine family (e.g., pseudocoptisine and palmatine) by substitution of the readily available aryl bromide and ketone coupling partners. Moreover, by combining enolate arylation with in situ functionalization, substituents can be rapidly and regioselectively introduced at the alkaloid C13 position, as demonstrated by the total synthesis of dehydrocorydaline. The avoidance of electrophilic aromatic substitution reactions to make the isoquinoline allows direct access to analogues possessing more varied electronic properties, such as the fluorine‐containing derivative synthesized here.  相似文献   

17.
A concise and divergent approach for the total syntheses of four cembrane diterpenoids, namely (+)‐sarcophytin, (+)‐chatancin, (?)‐3‐oxochatancin, and (?)‐pavidolide B, has been developed, and it also led to the structural revision of (?)‐isosarcophytin. The key steps of the strategy feature a double Mukaiyama Michael addition/elimination, a Helquist annulation, two substrate‐controlled facial‐selective hydrations, and a pinacol rearrangement. The described syntheses not only achieved these natural products in an efficient manner, but also provided insight into the biosynthetic relationship between the two different skeletons.  相似文献   

18.
The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C?H allylation, which directly generates an acetate‐based triketide stereodiad. In 4 previously reported total syntheses, 17–28 steps were required.  相似文献   

19.
First enantiospecific total syntheses of the cannabinol‐skeletal carbazole alkaloids murrayamines‐O and ‐P isolated from root barks of Murraya euchrestifoli, have been accomplished by highly diastereoselective, Lewis acid catalyzed coupling reactions of commercially available monoterpenes with carbazole derivative, which in addition to confirming the structure also established the absolute configuration of the natural products. Synthesis of both natural products and their enantiomers was achieved with high atom economy, in a protecting‐group free manner and in six steps longest linear sequence from commercially available aniline derivative and verbenol.  相似文献   

20.
Total syntheses of (?)‐isoschizogamine and (?)‐2‐hydroxyisoschizogamine are described. The synthesis employs two asymmetric Michael additions to establish chiral centers at C7 and the quaternary carbon C20. Regioselective reduction of the methylthioiminium cation rather than the enamine generates an isoschizogamine‐type pentacyclic skeleton. Acidic hydrolysis of the isoschizogamine‐type intermediate in the absence of oxygen provides natural (?)‐isoschizogamine. Conducting the reaction in the presence of oxygen leads to a multistep oxidative hydrolysis cascade that affords unnatural (?)‐2‐hydroxyisoschizogamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号