首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new tetracarboxylate ligand having short and long arms formed 2D layer ZnII coordination polymer 1 with paddle‐wheel secondary building units under solvothermal conditions. The framework undergoes solvent‐specific single crystal‐to‐single crystal (SC‐SC) transmetalation to produce 1Cu . With a sterically encumbered dipyridyl linker, the same ligand forms non‐interpenetrated, 3D, pillared‐layer ZnII metal–organic framework (MOF) 2 , which takes part in SC‐SC linker‐exchange reactions to produce three daughter frameworks. The parent MOF 2 shows preferential incorporation of the longest linker in competitive linker‐exchange experiments. All the 3D MOFs undergo complete SC‐SC transmetalation with CuII, whereby metal exchange in different solvents and monitoring of X‐ray structures revealed that bulky solvated metal ions lead to ordering of the shortest linker in the framework, which confirms that the solvated metal ions enter through the pores along the linker axis.  相似文献   

2.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

3.
A new amino‐functionalized strontium–carboxylate‐based metal–organic framework (MOF) has been synthesized that undergoes single crystal to single crystal (SC‐to‐SC) transformation upon desolvation. Both structures have been characterized by single‐crystal X‐ray analysis. The desolvated structure shows an interesting 3D porous structure with pendent ?NH2 groups inside the pore wall, whereas the solvated compound possesses a nonporous structure with DMF molecules on the metal centers. The amino group was postmodified through Schiff base condensation by pyridine‐2‐carboxaldehyde and palladium was anchored on that site. The modified framework has been utilized for the Suzuki cross‐coupling reaction. The compound shows high activity towards the C?C cross‐coupling reaction with good yields and turnover frequencies. Gas adsorption studies showed that the desolvated compound had permanent porosity and was microporous in nature with a BET surface area of 2052 m2 g?1. The material also possesses good CO2 (8 wt %) and H2 (1.87 wt %) adsorption capabilities.  相似文献   

4.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

5.
We present a new metal–organic framework (MOF) built from lanthanum and pyrazine‐2,5‐dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2] ? 2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single‐crystal X‐ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g?1 MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.  相似文献   

6.
The long‐persistent phosphorescent metal–organic framework (MOF) is a kind of highly desirable but rare material. Here, two new molecular MOF materials, {[Zn(tipa)Cl] ? NO3 ? 2 DMF}n ( 1 ) and {[Cd2(tipa)2Cl4] ? 6 DMF}n ( 2 ) (tipa=tri(4‐imidazolylphenyl)amine), which have 3D twofold interpenetrated ( utp ) and 2D noninterpenetrated ( kgd ) topologies, respectively, are reported. They exhibit unexpected long‐persistent emissions yet reported: At 77 K, they persist in glowing after stopping the UV irradiation on a timescale up to seconds at 77 K, which can be detected by the naked eye (ca. 2 s). Compounds 1 and 2 also undergo single‐crystal‐to‐single‐crystal (SC‐SC) transformations through different routes; a simple anion‐exchange route for 1 and a complicated replacement of μ1‐Cl? ions by DMF molecules accompanying I3? captured in the void for 2 .  相似文献   

7.
Getting suitable crystals for single‐crystal X‐ray crystallographic analysis still remains an art. Obtaining single crystals of metal–organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single‐crystal‐to‐single‐crystal manner. The spacer ligands with trans,trans,trans‐conformation in the pillared‐layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans‐conformation prior to [2+2] photo‐cycloaddition reaction and yield single crystals of MOF containing two‐dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.  相似文献   

8.
Materials with surfaces that can be switched from high/superhydrophobicity to superhydrophilicity are useful for myriad applications. Herein, we report a metal–organic framework (MOF) assembled from ZnII ions, 1,4‐benzenedicarboxylate, and a hydrophobic carborane‐based linker. The MOF crystal‐surface can be switched between hydrophobic and superhydrophilic through a chemical treatment to remove some of the building blocks.  相似文献   

9.
Miniaturizing the size of metal‐organic framework (MOF) crystals to the nanometer scale is challenging, but it provides more advanced applications without changing the characteristic features itself. It is especially useful to investigate the correlation between the porous properties and the interfacial structures of nanocrystals. Using amino acids as capping agents, nanoscale Tb‐MOF‐76 is fabricated rapidly by means of microwave‐assisted methods. Both the modular effects of the amimo acids and the acid–base environment of the reaction medium have an important impact on the morphologies and dimensions of Tb‐MOF‐76. The structures of the samples are confirmed by powder X‐ray diffraction, and the morphologies are characterized by SEM. Photoluminescence studies reveal that these Tb‐MOF‐76 materials exhibit a green emission corresponding to the transition 5D47FJ of Tb3+ ions under UV‐light excitation, which is sensitive to small organic molecules in solution.  相似文献   

10.
A terbium–organic framework (Tb‐MOF) was prepared using a previously reported procedure. Tb‐MOF was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, powder X‐ray diffraction and surface area analysis. Tb‐MOF was employed as a heterogeneous Lewis acid catalyst for the synthesis of β‐aminoalcohols. Also, the effect of ultrasonic irradiation was examined in the catalytic aminolysis of styrene oxide. The reaction conditions were optimized by variation of reaction time, catalyst concentration and solvent. A variety of β‐aminoalcohols were synthesized and characterized. The Tb‐MOF catalyst showed excellent selectivity and high yield for these transformations.  相似文献   

11.
Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra‐diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly‐thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF‐8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness—within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.  相似文献   

12.
Molecular components of opposite character are often incorporated within a single system, with a rigid core and flexible side arms being a common design choice. Herein, molecule L has been designed and prepared featuring the reverse design, with rigid side arms (arylalkynyl) serving to calibrate the mobility of the flexible polyether links in the core. Crystallization of this molecule with PbII ions led to a dynamic metal–organic framework (MOF) system that not only exhibits dramatic, reversible single‐crystal‐to‐single‐crystal transformations, but combines distinct donor and acceptor characteristics, allowing for substantial uptake of PdCl2 and colorimetric sensing of H2S in water.  相似文献   

13.
Single‐ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom‐up approach to nanoscale magnetism with potential applications in quantum computing and high‐density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid‐state chemistry of metal–organic frameworks (MOFs) to report the single‐crystal to single‐crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host–guest supramolecular aggregate is used as a playground in the first in‐depth study on the interplay between the internal magnetic field created by the long‐range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM.  相似文献   

14.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

15.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

16.
A three‐dimensional metal–organic framework (MOF) was synthesized by combining 4‐pyrazolecarboxylic acid and adenine. This MOF exhibits reversible flexibility and breathing adsorption behaviors in response to light hydrocarbons, with high capacity. The flexibility of the structural transitions was studied on the molecular scale by obtaining the crystal structures at 303, 353 and 373 K. The bridging nitrogen atoms of the pyrazolate rings act as a “kneecap” around the M???M axis, which causes the rotation of ligands around the M???M axis in response to external stimulus, thus giving rise to the deformation of the framework structure.  相似文献   

17.
As a major greenhouse gas, methane, which is directly vented from the coal‐mine to the atmosphere, has not yet drawn sufficient attention. To address this problem, we report a methane nano‐trap that features oppositely adjacent open metal sites and dense alkyl groups in a metal–organic framework (MOF). The alkyl MOF‐based methane nano‐trap exhibits a record‐high methane uptake and CH4/N2 selectivity at 298 K and 1 bar. The methane molecules trapped within the alkyl MOF were crystalographically identified by single‐crystal X‐ray diffraction experiments, which in combination with molecular simulation studies unveiled the methane adsorption mechanism within the MOF‐based nano‐trap. The IAST calculations and the breakthrough experiments revealed that the alkyl MOF‐based methane nano‐trap is a new benchmark for CH4/N2 separation, thereby providing a new perspective for capturing methane from coal‐mine methane to recover fuel and reduce greenhouse gas emissions.  相似文献   

18.
Metal–organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single‐crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF‐14) and find that it exhibits an anomalously large NTE effect. Temperature‐dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF‐14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low‐energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE.  相似文献   

19.
An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single‐crystal of a porous metal–organic framework, is demonstrated to have considerable advantages over other gas‐loading methods when investigating host–guest interactions. Specifically, loading the metal–organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3–25 kbar demonstrates hyperfilling of the Sc2BDC3 and two high‐pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system.  相似文献   

20.
Herein, we describe a new class of porous composites comprising metal–organic framework (MOF) crystals confined in single spherical matrices made of packed covalent‐organic framework (COF) nanocrystals. These MOF@COF composites are synthesized through a two‐step method of spray‐drying and subsequent amorphous (imine‐based polymer)‐to‐crystalline (imine‐based COF) transformation. This transformation around the MOF crystals generates micro‐ and mesopores at the MOF/COF interface that provide far superior porosity compared to that of the constituent MOF and COF components added together. We report that water sorption in these new pores occurs within the same pressure window as in the COF pores. Our new MOF@COF composites, with their additional pores at the MOF/COF interface, should have implications for the development of new composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号