首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

2.
The controlled hydrolysis of heteroleptic magnesium amide, LMgN(SiMe3)2 (L = CH[C(Me)N(2,6‐iPr2C6H3)]2) with water afforded the corresponding hydroxide [LMg(OH)·THF]2 as air and moisture sensitive compound. The presence of a sterically bulky β‐diketiminate ligand prevents the self‐condensation reaction of this hydroxide complex. Single crystal X‐ray analysis shows that the hydroxide is dimeric in the solid state. Reaction of the magnesium amide or LMg(Me)·OEt2 with LAlMe(OH) generates the heterobimetallic species containing the Mg–O–Al moiety. Additionally, the reaction of methylmagnesiumchloride with the free ligand leads to complex L′MgCl (L′ = CH[Et2NCH2CH2N(CMe)]2). As revealed by the crystal structure, L′MgCl is a solvent free monomeric magnesium chloride complex that is analogues to the Grignard reagent.  相似文献   

3.
Room temperature photolysis of a triply‐bridged borylene complex, [(μ3‐BH)(Cp*RuCO)2(μ‐CO)Fe(CO)3] ( 1 a ; Cp*=C5Me5), in the presence of a series of alkynes, 1,2‐diphenylethyne, 1‐phenyl‐1‐propyne, and 2‐butyne led to the isolation of unprecedented vinyl‐borylene complexes (Z)‐[(Cp*RuCO)2(μ‐CO)B(CR)(CHR′)] ( 2 : R, R′=Ph; 3 : R=Me, R′=Ph; 4 : R, R′=Me). This reaction permits a hydroboration of alkyne through an anti ‐ Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo‐[1,2‐(Cp*Ru)2(μ‐CO)2{Fe2(CO)5}‐4‐Ph‐4,5‐C2BH2] ( 5 a) , is formed. A plausible mechanism has been proposed for the formation of vinyl‐borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated 11B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, 1H, 11B, and 13C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2 , 5 a , and 5 b .  相似文献   

4.
Two series of diorganotin(IV) dialkyldithiophosphates, [RR′Sn{SSP(OR″)2}2](R = Me or Et; R′= Ph; R″ = Et, Prn, Pri or Bun) and [RR′Sn(Cl){SSP(OR″)2}] (R = R′= Me, Et or Ph; R″ = Ph; R″ = Et, Pri or Bun) were prepared and characterised by i.r. and NMR (1H, 13C, 31P, 199Sn) spectroscopy. The NMR data indicate five and six coordinate geometries for [RR′Sn(Cl){SSP(OR″)2}] and [RR′Sn{SSP(OR″)2}2] complexes, respectively. The chloro complexes showed 2J (PSn) whereas such couplings were not observed in the spectra of [RR′Sn{SSP(OR″)2}2].  相似文献   

5.
The insertion reaction of CS2 with Mg(NR2)2 (R= Et, iPr), MgR′2 (R′= Et, Ph) and R″MgBr (R″= iPr, Ph) respectively lead solid products, Mg(S2CNR2)2(THF)n ( 1 : R= Et, n=2; 2 : R= iPr, n=1), Mg(S2C′R)2(THF)2 ( 3 : ′R= Et, 4 : ′R= Ph), BrMg(S2C″R) (THF)3 ( 5 : ″R= iPr, 6 : ″R= Ph) in which the inserted carbon disulfides act as terminal chelating ligands. These compounds were characterized with 1H, 13C NMR, IR spectroscopy, mass spectrometry, elemental analyses, and X‐ray crystallography.  相似文献   

6.
A series of phosphorus-chalcogen chelated hydrido iron (II) complexes 1–7 , (o-(R'2P)-p-R-C6H4Y)FeH (PMe3)3 ( 1 : R = H, R' = Ph, Y = O; 2 : R = Me, R' = Ph, Y = O; 3 : R = H, R' = iPr, Y = O; 4 : R = Me, R' = iPr, Y = O; 5 : R = H, R' = Ph, Y = S; 6 : R = Me, R' = Ph, Y = S; 7 : R = H, R' = Ph, Y = Se), were synthesized. The catalytic performances of 1–7 for dehydration of amides to nitriles were explored by comparing three factors: (1) different chalcogen coordination atoms Y; (2) R' group of the phosphine moiety; (3) R substituent group at the phenyl ring. It is confirmed that 5 with S as coordination atom has the best catalytic activity and 7 with Se as coordination atom has the poorest catalytic activity among complexes 1 , 5 and 7 . Electron-rich complex 4 is the best catalyst among the seven complexes and the dehydration reaction was completed by using 2 mol% catalyst loading at 60 °C with 24 hr in the presence of (EtO)3SiH in THF. Catalyst 4 has good tolerance to many functional groups. Among the seven iron complexes, new complexes 3 and 4 were obtained via the O-H bond activation of the preligands o-iPr2P(C6H4)OH and o-iPr2P-p-Me-(C6H4)OH by Fe(PMe3)4. Both 3 and 4 were characterized by spectroscopic methods and X-ray diffraction analysis. The catalytic mechanism was experimentally studied and also proposed.  相似文献   

7.
Reactions of triorganotin chlorides with potassium salt of O-alkyl trithiophosphate [ROP(S)(SK)2; R = Me, Pri, Ph] in 2:1 molar ratio in anhydrous benzene yield triorganotin O-alkyl trithiophosphate of the type ROP(S) [SSnR′3]2 R = Me, Pri; Ph, R′ = Prn, Bun, Ph] which are found to be monomeric in nature. These complexes are soluble in common organic solvents. Similar reactions of diorganotin chloride with dipotassium salt of S-alkyl trithiophosphate yield diorganotin-S-alkyl trithiophosphate of the type [(RS)P(O)S2]2SnR′2; R = Me, Pri; R′ = Me, Et, Ph, which also are found to be monomeric in nature and are soluble in common organic solvents. The newly synthesized derivatives have been characterized by physicochemical and spectroscopic techniques, IR, NMR (1H, 31P, and 119Sn).  相似文献   

8.
The first examples of magnesium(I) dimers bearing tripodal ligands, [(Mg{κ3N,N′,O‐(ArNCMe)2(OCCPh2)CH})2] [Ar=2,6‐iPr2C6H3 (Dip) 7 , 2,6‐Et2C6H3 (Dep) 8 , or mesityl (Mes) 9 ] have been prepared by post‐synthetic modification of the β‐diketiminato ligands of previously reported magnesium(I) systems, using diphenylketene, O?C?CPh2. In contrast, related reactions between β‐diketiminato magnesium(I) dimers and the isoelectronic ketenimine, MesN?C?CPh2, resulted in reductive insertion of the substrate into the Mg?Mg bond of the magnesium(I) reactant, and formation of [{(Nacnac)Mg}2{μ‐κ2N,C‐(Mes)NCCPh2}] (Nacnac=[(ArNCMe)2CH]?; Ar=Dep 10 or Mes 11 ). Reactions of the four‐coordinate magnesium(I) dimer 8 with excess CO2 are readily controlled, and cleanly give carbonate [(LMg)2(μ‐κ22‐CO3)] 12 (L=[κ3N,N′,O‐(DepNCMe)2(OCCPh2)CH]?; thermodynamic product), or oxalate [(LMg)2(μ‐κ22‐C2O4)] 13 (kinetic product), depending on the reaction temperature. Compound 12 and CO are formed by reductive disproportionation of CO2, whereas 13 results from reductive coupling of two molecules of the gas. Treatment of 8 with an excess of N2O cleanly gives the μ‐oxo complex [(LMg)2(μ‐O)] 14 , which reacts facilely with CO2 to give 12 . This result presents the possibility that 14 is an intermediate in the formation of 12 from the reaction of 8 and CO2. In contrast to its reactions with CO2, 8 reacts with SO2 over a wide temperature range to give only one product; the first example of a magnesium dithionite complex, [(LMg)2(μ‐κ22‐S2O4)] 16 , which is formed by reductive coupling of two molecules of SO2, and is closely related to f‐block metal dithionite complexes derived from similar SO2 reductive coupling processes. On the whole, this study strengthens previously proposed analogies between the reactivities of magnesium(I) systems and low‐valent f‐block metal complexes, especially with respect to small molecule activations.  相似文献   

9.
The μ‐amino–borane complexes [Rh2(LR)2(μ‐H)(μ‐H2B=NHR′)][BArF4] (LR=R2P(CH2)3PR2; R=Ph, iPr; R′=H, Me) form by addition of H3B?NMeR′H2 to [Rh(LR)(η6‐C6H5F)][BArF4]. DFT calculations demonstrate that the amino–borane interacts with the Rh centers through strong Rh‐H and Rh‐B interactions. Mechanistic investigations show that these dimers can form by a boronium‐mediated route, and are pre‐catalysts for amine‐borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysis.  相似文献   

10.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

11.
Reduction of a variety of extremely bulky amido Group 12 metal halide complexes, [LMX(THF)0,1] (L=amide; M=Zn, Cd, or Hg; X=halide) with a magnesium(I) dimer gave a homologous series of two‐coordinate metal(I) dimers, [L′MML′] (L′=N(Ar?)(SiMe3), Ar?=C6H2{C(H)Ph2}2Pri‐2,6,4); and the formally zinc(0) complex, [L*ZnMg(MesNacnac)] (L*=N(Ar*)(SiPri3); Ar*=C6H2{C(H)Ph2}2Me‐2,6,4; MesNacnac=[(MesNCMe)2CH]?, Mes=mesityl), which contains the first unsupported Zn? Mg bond. Two equivalents of [L*ZnMg(MesNacnac)] react with ZnBr2 or ZnBr2(tmeda) to give the mixed valence, two‐coordinate, linear tri‐zinc complex, [L*ZnIZn0ZnIL*], and the first zinc(I) halide complex, [L*ZnZnBr(tmeda)], respectively. The analogues [L*ZnMZnL*] (M=Cd or Hg), were also prepared, the Cd species contains the first Zn? Cd bond in a molecular compound. Metal–metal bonding was studied by DFT calculations.  相似文献   

12.
A series of titanium(IV) complexes Ti(O‐i‐Pr)Cl3(THF)(PhCOR) (R = H ( 1 ), CH3 ( 2 ), or Ph ( 3 )) is prepared quantitatively from reactions of [Ti(O‐i‐Pr)Cl2(THF)(μ‐Cl)]2 with 2 molar equiv. PhCOR. Treatment of Ti(O‐i‐Pr)Cl3 with 2 molar equiv. of PhCOR affords the disubstituted complexes Ti(O‐i‐Pr)Cl3(PhCOR)2 (R = CH3 ( 4 ) or Ph ( 5 )). The 13C NMR study of these complexes shows that the relative bonding abilities are in the order of PhCOCH3 > PhCHO > PhCOPh. The molecular structure of 5 reveals that one of the benzophenone ligands is trans to the strongest 2‐propoxide ligand with a long Ti‐O(carbonyl) distance of 2.193(5) Å which is much longer than the other Ti‐O(carbonyl) distance of 2.097(4) Å by ?0.1 Å. All ligands cis to the alkoxide ligand are bending away from the alkoxide ligand with the RO‐Ti‐L angles ranging from 93.6(2) to 99.0(2)°.  相似文献   

13.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

14.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

15.
《Polyhedron》2002,21(25-26):2531-2535
The reactivities of [trans-R2MoO(NNPhR′)(o-phen)], R=R′=Me (1); R=Me, R′=Ph (2); R=Ph, R′=Me (3); R=R′=Ph (4), toward (i) neutral 1,1-disubstituted hydrazines, R′PhNNH2 and (ii) 1,1-disubstituted hydrazine hydrochlorides, R′PhNNH2·HCl, R′=Me, Ph, were studied in acetonitrile. In the first case, no condensation reaction of the free oxo group was observed under different experimental conditions. In the second case, using a 1:1 precursor/hydrazine hydrochloride molar ratio, the oxo group was also unreactive, instead one methyl or phenyl group bonded to molybdenum was displaced as methane or benzene and was subsequently substituted by one chloride ligand affording complexes formulated as [trans-RClMoO(NNPhR′)(o-phen)], R=R′=Me (5); R=Me, R′=Ph (6); R=Ph, R′=Me, (7)·MeCN; R=R′=Ph, (8)·MeCN. Finally, when a 1:2 precursor/hydrazine hydrochloride molar ratio was used, both methyl and phenyl groups were substituted affording complexes formulated as [trans-Cl2MoO(NNPhR′)(o-phen)], R′=Me (9), R=Ph (10). The new organometallic compounds were characterised by IR, UV–Vis and 1H NMR spectroscopy while the crystal and molecular structure of 6 was determined by X-ray diffraction analysis.  相似文献   

16.
We report the synthesis and characterization of new Ca(II) and Mg(II) complexes of the type [Ph―PPP]MR (M = Ca, R = N(SiMe3)2 ( 1 ); M = Mg, R = nBu ( 2 )) where Ph―PPP? is a tridentate monoanionic ligand (Ph―PPP―H = bis(2‐diphenylphosphinophenyl)phosphine). Reaction of the opportune metal precursor (Ca[N(SiMe3)2]2.THF2 or MgnBu2) with 1 equiv. of the pro‐ligand Ph―PPPH produces the corresponding calcium amido ( 1 ) or magnesium butyl ( 2 ) complex in high yield. Solution NMR studies show monomeric and kinetically stable structures for both species. The obtained complexes efficiently mediate the ring‐opening polymerization of ?‐caprolactone showing a turnover frequency of 40 000 h?1. In the presence of a hexogen alcohol, up to 2000 equiv. of monomer are converted by using a low loading of catalyst (5 µmol). Kinetic studies show a first‐order reaction in monomer concentration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The enantiomerically pure dimeric N, O‐5‐chelates [Me2In(μ‐OCH2CH(R)NMe2)]2 {R = Me (S) ( 2 ); R = iPr (S) ( 3 ); R = iBu (S) ( 4 ); R = Bz (S) ( 5 )}, and [Me2In‐{μ‐(1R, 2S)‐OCH(Ph)CH(Me)NMe2}]2 ( 6 ), as well as the achiral dimeric N, O‐6‐chelate [Me2In(μ‐O(CH2)3NMe2)]2 ( 7 ) have been synthesized from trimethylindium and equimolar amounts of the corresponding enantiomerically pure dimethylamino alcohols or of the achiral dimethylaminopropanol by elimination of methane. Their 1H NMR, 13C NMR, and mass spectra as well as the X‐ray single crystal structure analyses of [Me2In{μ‐O(CH2)2NMe2}]2 ( 1 ), 3, 5, 6 and 7 are described and discussed. The coordinative N→In bonds of the five‐coordinate indium complexes show dynamic dissociation/association processes. 1—6 were found to be useful reagents for the partial kinetic resolution of 2‐carbomethoxy‐1, 1′‐binaphthyl triflate.  相似文献   

18.
《Polyhedron》1999,18(5):729-733
Equimolar quantities of [Mo (CO) (η2-RC2R′)2Cp] [BF4] (R=R′=Me Ph R=Me R′=Ph) and L L′ or L″ {L L′ or L″= [WI2 (CO){PhP(CH2CH2PPh2)2-PP′} (η2-RC2R′)]} (L R=R′=Me L′ R=R′=Ph L″ R=Me R′=Ph) react in CH2Cl2 at room temperature to give the new bimetallic complexes[Mo (CO) (L L′ or L″–P) (η2-RC2R′)Cp] [BF4] (1–9) via displacement of the alkyne ligand on the molybdenum centre The complexes have been characterised by elemental analysis IR and 1 H NMR spectroscopy and in selected cases by 31 P NMR spectroscopy.  相似文献   

19.
To clarify the nature of the Mo?Carene interaction in terphenyl complexes with quadruple Mo?Mo bonds, ether adducts of composition [Mo2(Ar′)(I)(O2CR)2(OEt2)] have been prepared and characterized (Ar′=ArXyl2, R=Me; Ar′=ArMes2, R=Me; Ar′=ArXyl2, R=CF3) (Mes=mesityl; Xyl=2,6‐Me2C6H3, from now on xylyl) and their reactivity toward different neutral Lewis bases investigated. PMe3, P(OMe)3 and PiPr3 were chosen as P‐donors and the reactivity studies complemented with the use of the C‐donors CNXyl and CN2C2Me4 (1,3,4,5‐tetramethylimidazol‐2‐ylidene). New compounds of general formula [Mo2(Ar′)(I)(O2CR)2( L )] were obtained, except for the imidazol‐2‐ylidene ligand that yielded a salt‐like compound of composition [Mo2(ArXyl2)(O2CMe)2(CN2C2Me4)2]I. The Mo?Carene interaction in these complexes has been analyzed with the aid of X‐ray data and computational studies. This interaction compensates the coordinative and electronic unsaturation of one of the Mo atoms in the above complexes, but it seems to be weak in terms of sharing of electron density between the Mo and Carene atoms and appears to have no appreciable effect in the length of the Mo?Mo, Mo?X, and Mo? L bonds present in these molecules.  相似文献   

20.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号