首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiol‐ene cationic and radical reactions were conducted for 1:1 addition between a thiol and vinyl ether, and also for cyclization and step‐growth polymerization between a dithiol and divinyl ether. p‐Toluenesulfonic acid (PTSA) induced a cationic thiol‐ene reaction to generate a thioacetal in high yield, whereas 2,2′‐azobisisobutyronitrile resulted in a radical thiol‐ene reaction to give a thioether, also in high yield. The cationic and radical addition reactions between a dithiol and divinyl ether with oxyethylene units yielded amorphous poly(thioacetal)s and crystalline poly(thioether)s, respectively. Under high‐dilution conditions, the cationic and radical reactions resulted in 16‐ and 18‐membered cyclic thioacetal and thioether products, respectively. Furthermore, concurrent cationic and radical step‐growth polymerizations were realized using PTSA under UV irradiation to produce polymers having both thioacetal and thioether linkages in the main chain.  相似文献   

2.
1‐(5‐(R‐Amino)‐1,2,4‐thiadiazol‐3‐yl)propan‐2‐ones were used as activated ketomethylenic compounds for the Gewald and Dimroth reactions. It was found out that they exhibited high reactivity in such anion reactions for the construction of the 1,2,3‐triazole and thiophene frameworks. The target 1,2,3‐triazoles and thiophenes were obtained in high yields in minimum time.  相似文献   

3.
To address a long‐standing problem of finding efficient reactions for chemical labeling of protein‐based S‐nitrosothiols (RSNOs), we computationally explored hitherto unknown (3+2) cycloaddition RSNO reactions with alkynes and alkenes. Nonactivated RSNO cycloaddition reactions have high activation enthalpy (>20 kcal/mol at the CBS‐QB3 level) and compete with alternative S—N bond insertion pathway. However, the (3+2) cycloaddition reaction barriers can be dramatically lowered by coordination of a Lewis acid to the N atom of the —SNO group. To exploit this effect, we propose to use reagents with Lewis acid and a strain‐activated carbon–carbon multiple bond linked by a rigid scaffold, which can react with RSNOs with small activation enthalpies (~5 kcal/mol) and high reaction exothermicities (~40 kcal/mol). The proposed efficient RSNO cycloaddition reactions can be used for future development of practical RSNO labeling reactions. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm?2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.  相似文献   

5.
The one‐pot synthesis of a series of 1,2,4‐triazines from the reactions of semicarbazide or thiosemi‐carbazide with various α,β‐dicarbonyl compounds under reflux conditions in a EtOH‐H2O (9:1) mixture as solvent and catalyzed by nano‐sized silica supported FeCl3 (FeCl3@SiO2) was investigat‐ed. The FeCl3 content of the catalyst was measured by atomic absorption to get the adsorption ca‐pacity. The reactions gave high yields of the product and the catalyst was easily separated and re‐used for successive reaction runs without significant loss of activity.  相似文献   

6.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   

7.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C? N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   

8.
The construction of DNA‐encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA‐compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium‐catalyzed reactions (Suzuki cross‐coupling, Sonogashira cross‐coupling, and copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.  相似文献   

9.
The evolution of the bromine end functionality during the bulk atom transfer radical polymerization (ATRP) of styrene [in the presence of the catalyst CuBr/4,4′‐di‐(5‐nonyl)‐2,2′‐bipyridine] was monitored with 600‐MHz 1H NMR. A decrease in the functionality versus the conversion was observed. The loss of functionality was especially significant at very high conversions (>90%). The experimental data were compared with a kinetic model of styrene ATRP. The latter indicated that the loss of chain‐end functionality was partly due to bimolecular terminations but was mainly due to β‐H elimination reactions induced by the copper(II) deactivator. These elimination reactions, which occurred later in the reaction, did not significantly affect the polymer molecular weights and the polydispersity. Therefore, a linear evolution of the molecular weights and low‐polydispersity polymers were still observed, despite a loss of functionality. Understanding these side reactions helped in the selection of the proper conditions for reducing the contribution of the elimination process and for preparing well‐defined polystyrene (number‐average molecular weight ~10,000 g mol?1; weight‐average molecular weight/number‐average molecular weight ~1.1) with a high functionality (92%). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 897–910, 2005  相似文献   

10.
A general strategy for the design of asymmetric cascade reactions using readily available halides and carbon monoxide (CO) as substrates is developed. The key is the catalytic generation of C1‐ammonium enolates for the subsequent asymmetric cascade reactions through the combination of palladium‐catalyzed carbonylation and chiral Lewis base catalysis. Utilizing this strategy, we have established asymmetric formal [1+1+4] and [1+1+2] reactions to afford chiral dihydropyridones and β‐lactams with high yields and high enantio‐ and diastereoselectivities.  相似文献   

11.
铃木偶联反应是合成聚烯烃、苯乙烯和联苯衍生物等功能性有机化合物的有力工具,广泛应用于精细化工、制药和生化工业领域.钯(Pd)基催化剂是目前性能最好的铃木偶联反应催化剂,但钯的低丰度和高成本限制了其大规模应用.因此,提高Pd原子的利用效率,降低Pd用量至关重要.减小金属纳米粒子的尺寸,使其成为小团簇甚至孤立的金属原子是实...  相似文献   

12.
The 1,3‐dipolar cycloaddition (13DC) reactions of nitrile‐oxide NO 1 with two ethylenes, enamine 2a and enamine 2b , were computationally studied using B3LYP/6‐31G(d) DFT methods. The two possible ortho and meta regioselective channels were characterized and analyzed. The moderate polarity of these 13DC reactions is related to the high nucleophilic character of both ethylenes, and the moderate electrophilic nature of the NO 1 , that accounts for the relatively low calculated activation energies. Analysis of different forms of energies along the different reaction channels indicates that the present 13DC reactions are completely ortho regioselective, accordingly to the experimental outcomes. Electron localization function analysis indicates that these 13DC reactions proceed via a nonconcerted (two‐stage) one‐step mechanism.  相似文献   

13.
The reaction of ester‐stabilized sulfonium ylides with cyclopentenone to give (+)‐ 5 ((1S,5R,6S)‐ethyl 2‐oxobicyclo[3.1.0]hexane‐6‐carboxylate), an important precursor to the pharmacologically important compound (+)‐LY354740, has been studied using chiral sulfides operating in both catalytic (sulfide, Cu(acac)2, ethyl diazoacetate, 60 °C) and stoichiometric modes (sulfonium salt, base, room temperature). It was found that the reaction conditions employed had a major influence over both diastereo‐ and enantioselectivity. Under catalytic conditions, good enantioselectivity with low diastereoselectivity was observed, but under stoichiometric conditions low enantioselectivity with high diastereoselectivity was observed. When the stoichiometric reactions were conducted at high dilution, diastereoselectivity was reduced. This indicated that base‐mediated betaine equilibration was occurring (which is slow relative to ring closure at high dilution). Based on this model, conditions for achieving high enantioselectivity were established as follows: use of a preformed ylide, absence of base, hindered ester (to reduce ylide‐mediated betaine equilibration), and low concentration. Under these conditions high enantioselectivity (95 % ee) was achieved, albeit with low diastereocontrol. Our model for selectivity has been applied to other sulfonium ylide mediated cyclopropanation reactions and successfully accounts for the diastereoselectivity observed in all such reported reactions to date.  相似文献   

14.
Self‐assembled copper(II) complexes are described as effective catalysts for nitroaldol (Henry) reactions on water. The protocol involves a heterogeneous process and the catalysts can be recovered and recycled without loss of activity. Further, C2‐symmetric N,N′‐substituted chiral copper(II) salan complexes are found to be more effective catalysts than chiral copper(II) salen complexes for reactions in homogeneous catalysis, with high enantioselectivities. The reactions involve bifunctional catalysis, bearing the properties of a Brønsted base, as well as a Lewis acid, to effect the reaction in the absence of external additives.  相似文献   

15.
The photolytic radical intermolecular addition following SH2′ cyclization reactions of t‐BuHgCl with 1‐bromo‐4‐(2‐choroallyloxy)‐but‐2‐ene and (E)‐4‐bromobut‐2‐enyl acrylate gave the good yields and the chemoselectivity of the cyclized product. The high stereoselectivity of the reactions is discussed.  相似文献   

16.
On‐surface Pd‐ and Cu‐catalyzed C?C coupling reactions between phenyl bromide functionalized porphyrin derivatives on an Au(111) surface have been investigated under ultra‐high vacuum conditions by using scanning tunneling microscopy and kinetic Monte Carlo simulations. We monitored the isothermal reaction kinetics by allowing the reaction to proceed at different temperatures. We discovered that the reactions catalyzed by Pd or Cu can be described as a two‐phase process that involves an initial activation followed by C?C bond formation. However, the distinctive reaction kinetics and the C?C bond‐formation yield associated with the two catalysts account for the different reaction mechanisms: the initial activation phase is the rate‐limiting step for the Cu‐catalyzed reaction at all temperatures tested, whereas the later phase of C?C formation is the rate‐limiting step for the Pd‐catalyzed reaction at high temperature. Analysis of rate constants of the Pd‐catalyzed reactions allowed us to determine its activation energy as (0.41±0.03) eV.  相似文献   

17.
High‐spin iron(III)‐iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)‐iodosylarene intermediates is much greater than that of the corresponding iron(IV)‐oxo complex in these reactions. The iron(III)‐iodosylarene species—not high‐valent iron(IV)‐oxo and iron(V)‐oxo species—are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long‐standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions.  相似文献   

18.
Controlling the pH value by changing the negative ion of ionic liquids, the same reactions of aromatic aldehyde, 2‐(2,3‐dihydrothiochromen‐4‐ylidene) malononitrile and malononitrile product unaromatized and aromatized 6H‐benzo[c]thiochromene derivatives in high yields. The nice features of these procedures include mild reactions condition, simple operations, high yields, and environmentally benign. J. Heterocyclic Chem., (2011).  相似文献   

19.
N,O‐acetals (NOAcs) were developed as bench stable surrogates for N‐carbamoyl, (Boc, Cbz and Fmoc) formaldehyde and glyoxylate imines in asymmetric Mannich reactions. The NOAcs can be directly utilized in the chiral primary amine catalyzed Mannich reactions of both acyclic and cyclic β‐ketocarbonyls with high yields and excellent stereoselectivity. The current reaction offers a straightforward approach in the asymmetric synthesis of α‐ or β‐amino carbonyls bearing chiral quaternary centers in a practical and highly stereocontrolled manner.  相似文献   

20.
A novel continuous flow system for automated high‐throughput screening, autonomous optimization, and enhanced process control of polymerizations was developed. The computer‐controlled platform comprises a flow reactor coupled to size exclusion chromatography (SEC). Molecular weight distributions are measured online and used by a machine‐learning algorithm to self‐optimize reactions towards a programmed molecular weight by dynamically varying reaction parameters (i.e. residence time, monomer concentration, and control agent/initiator concentration). The autonomous platform allows targeting of molecular weights in a reproducible manner with unprecedented accuracy (<2.5 % deviation from pre‐selected goal) for both thermal and light‐induced reactions. For the first time, polymers with predefined molecular weights can be custom made under optimal reaction conditions in an automated, high‐throughput flow synthesis approach with outstanding reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号