首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Molecular binding of fullerenes, C60 and C70, with the ZnII complex of a monomeric ring‐fused porphyrin derivative ( 2 ‐py) as a host molecule, which has a concave π‐conjugated surface, has been confirmed spectroscopically. The structures of associated complexes composed of fullerenes and 2 ‐py were explicitly established by X‐ray diffraction analysis. The fullerenes in the 2:1 complexes, which consist of two 2 ‐py molecules and one fullerene molecule, are fully covered by the concave surfaces of the two 2 ‐py molecules in the crystal structure. In contrast, in the crystal structure of the 1:1 complex consisting of one 2 ‐py molecule and one C60 molecule, the C60 molecule formed a π–π stacked pair with a C60 molecule in the neighboring complex using a partial surface, which was uncovered by the 2 ‐py molecule. Additionally, the molecular size of fullerene adopted significantly affects the 1H NMR spectral changes and the redox properties of 2 ‐py upon the molecular binding.  相似文献   

2.
A novel stilbene‐based salicylhydrazone compound {systematic name: (E)‐4,4′‐(ethene‐1,2‐diyl)bis[(NE)‐N′‐(2‐hydroxybenzylidene)benzohydrazide] dimethyl sulfoxide disolvate, C30H24N4O4·2C2H6OS or L·2DMSO} was synthesized and characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction and luminescence spectroscopy. The title compound crystallizes in the monoclinic space group P21/c, with half a symmetry‐independent L molecule and one dimethyl sulfoxide (DMSO) solvent molecule in the asymmetric unit. The L molecule adopts an almost planar structure, with a small dihedral angle between the planes of the stilbene and salicylhydrazone groups. There are multiple π–π stacking interactions between adjacent L molecules. The DMSO solvent molecules act as proton donors and acceptors, forming hydrogen bonds of various strengths with the L molecules. In addition, the geometry optimization of a single molecule of L and its luminescence properties either in solution, as a solvated solid or as a desolvated solid were studied. The compound shows an aggregation‐induced emission (AIE) effect and exhibits switchable luminescence colouration in the solid state by the simple removal or re‐addition of the DMSO solvent.  相似文献   

3.
Octakis(pyrazol‐1‐ylmethyl)biphenylene ethanol solvate, C44H40N16·C2H6O, has two independent centrosymmetric molecules, one of which is hydrogen bonded to the solvent molecule. One molecule adopts an arrangement with three arms up and one down in each benzene ring, whilst the other molecule has a conformation with two adjacent arms on the same side of the ring. In neither case is the expected fully alternating form observed.  相似文献   

4.
The recognition of either homomeric or heteromeric pairs of pentoses in an aromatic oligoamide double helical foldamer capsule was evidenced by circular dichroism (CD), NMR spectroscopy, and X‐ray crystallography. The cavity of the host was predicted to be large enough to accommodate simultaneously two xylose molecules and to form a 1:2 complex (one container, two saccharides). Solution and solid‐state data revealed the selective recognition of the α‐4C1‐d ‐xylopyranose tautomer, which is bound at two identical sites in the foldamer cavity. A step further was achieved by sequestering a heteromeric pair of pentoses, that is, one molecule of α‐4C1‐d ‐xylopyranose and one molecule of β‐1C4‐d ‐arabinopyranose despite the symmetrical nature of the host and despite the similarity of the guests. Subtle induced‐fit and allosteric effects are responsible for the outstanding selectivities observed.  相似文献   

5.
The asymmetric unit of the title compound, poly[{μ4‐4‐[(carboxylatomethyl)sulfanyl]benzoato}(N,N‐dimethylformamide)zinc], [Zn(C9H6O4S)(C3H7NO)]n, consists of one crystallographically independent ZnII cation, one 4‐[(carboxylatomethyl)sulfanyl]benzoate (L2−) ligand and one coordinated dimethylformamide (DMF) molecule. The zinc ion is coordinated by five O atoms from four separate L2− ligands and one DMF molecule, and the ZnO5 unit displays a distorted square‐based‐pyramidal geometry. Two ZnO5 units form a binuclear zinc–tetracarboxylate paddlewheel cluster, and these are bridged by L2− ligands to generate an intersecting helical chain (Zn2+ ions as nodes), which is composed of right‐handed (P) and left‐handed (M) helices. Weak C—H...O hydrogen bonds extend the one‐dimensional coordinated chain into a weakly bound three‐dimensional supramolecular architecture.  相似文献   

6.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

7.
The title compound, 2C5H7N2+·2C23H13O2·H2O, formed as a by‐product in the attempted synthesis of a nonlinear optical candidate molecule, contains two independent 4‐aminopyridinium cations and 2‐(anthracen‐9‐yl)‐3‐oxo‐3H‐inden‐1‐olate anions with one solvent water molecule. This is the first reported structure containing these anions. The two anions are not planar, having different interplanar angles between the anthracenyl and inden‐1‐olate moieties of 59.07 (5) and 83.92 (5)°. The crystal packing, which involves strong classical hydrogen bonds and one C—H...π interaction, appears to account for both the nonplanarity and this difference.  相似文献   

8.
We reported a novel strategy for investigating small molecule binding to G‐quadruplexes (GQs). A newly synthesized dinuclear platinum(II) complex (Pt2L) containing a nitroxide radical was shown to selectively bind a GQ‐forming sequence derived from human telomere (hTel). Using the nitroxide moiety as a spin label, electron paramagnetic resonance (EPR) spectroscopy was carried out to investigate binding between Pt2L and hTel GQ. Measurements indicated that two molecules of Pt2L bind with one molecule of hTel GQ. The inter‐spin distance measured between the two bound Pt2L, together with molecular docking analyses, revealed that Pt2L predominately binds to the neighboring narrow and wide grooves of the G‐tetrads as hTel adopts the antiparallel conformation. The design and synthesis of nitroxide tagged GQ binders, and the use of spin‐labeling/EPR to investigate their interactions with GQs, will aid the development of small molecules for manipulating GQs involved in crucial biological processes.  相似文献   

9.
Dodecavanadate, [V12O32]4? (V12), possesses a 4.4 Å cavity entrance, and the cavity shows unique electrophilicity. Owing to the high polarizability, Br2 was inserted into V12, inducing the inversion of one of the VO5 square pyramids to form [V12O32(Br2)]4? (V12(Br2)). The inserted Br2 molecule was polarized and showed a peak at 185 cm?1 in the IR spectrum. The reaction of V12(Br2) and toluene yielded bromination of toluene at the ring, showing the electrophilicity of the inserted Br2 molecule. Compound V12(Br2) also reacted with propane, n‐butane, and n‐pentane to give brominated alkanes. Bromination with V12(Br2) showed high selectivity for 3‐bromopentane (64 %) among the monobromopentane products and preferred threo isomer among 2‐,3‐dibromobutane and 2,3‐dibromopenane. The unique inorganic cavity traps Br2 leading the polarization of the diatomic molecule. Owing to its new reaction field, the trapped Br2 shows selective functionalization of alkanes.  相似文献   

10.
Multicomponent crystals or cocrystals play a significant role in crystal engineering, the main objective of which is to understand the role of intermolecular interactions and to utilize such understanding in the design of novel crystal structures. Molecules possessing carboxylic acid and amide functional groups are good candidates for forming cocrystals. β‐Resorcylic acid monohydrate, C7H6O4·H2O, (I), crystallizes in the triclinic space group P with one β‐resorcylic acid molecule and one water molecule in the asymmetric unit. The cocrystal thymine–β‐resorcylic acid–water (1/1/1), C5H6N2O2·C7H6O4·H2O, (II), crystallizes in the orthorhombic space group Pca21, with one molecule each of thymine, β‐resorcylic acid and water in the asymmetric unit. All available donor and acceptor atoms in (I) and (II) are utilized for hydrogen bonding. The acid and amide functional groups are well known for the formation of self‐complementary acid–acid and amide–amide homosynthons. In (I), an acid–acid homosynthon is observed, while in (II), an amide–acid heterosynthon is present. In (I), the β‐resorcylic acid molecule exhibits the expected intramolecular S(6) motif between the hydroxy and carbonyl O atoms, and an intermolecular R22(8) dimer motif between the carboxylic acid groups; only the former motif is observed in (II). The water solvent molecule in (I) propagates the discrete dimers into two‐dimensional hydrogen‐bonded sheets. In (II), thymine and β‐resorcylic acid molecules do not form self‐complementary amide–amide and acid–acid homosynthons; instead, a thymine–β‐resorcylic acid heterosynthon is observed. With the help of the water molecule, this heterosynthon is aggregated into a three‐dimensional hydrogen‐bonded network. The absence of thymine base pairing in (II) might be linked to the availability of additional functional groups and the preference of the donor and acceptor hydrogen‐bond combinations.  相似文献   

11.
In the title mixed‐ligand metal–organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit contains a crystallographically unique CdII atom, one doubly deprotonated 4,4′‐sulfonyldibenzoic acid ligand (H2SDBA), one 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (TMPHEN) molecule and one water molecule. Each CdII centre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxylate groups of three different SDBA2− ligands and one O atom from a coordinated water molecule, giving a distorted CdN2O4 octahedral geometry. Single‐crystal X‐ray diffraction analysis reveals that the compound is a one‐dimensional double‐chain polymer containing 28‐membered rings based on Cd2O2 clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O—H...O and C—H...O hydrogen bonds to form a three‐dimensional supramolecular framework. The framework is reinforced by π–π and C—O...π interactions.  相似文献   

12.
The long‐chain ligand, 1‐phenyl‐3‐methyl‐4‐heptanoyl‐pyrazol‐5‐one (HL) and its zinc(II) complex ZnL2 were synthesized. The structure and the properties of ZnL2 were characterized by elemental analysis, IR spectroscopy, X‐ray diffraction, and thermogravimetric analysis. The zinc ion is five‐coordinated in a square‐pyramidal environment by four oxygen atoms of the HL ligands in the equatorial plane and one water molecule in the axial position. The water molecule is directly bonded to Zn2+ and involved in intermolecular hydrogen bonding network. The complex and its corresponding ligand were screened in vitro against some strains of the human pathogenic bacteria. The metal complex exhibits higher antibacterial activity than its corresponding ligand. The complex exhibits purple effect emission as the result of fluorescence from the intraligand emission excited state.  相似文献   

13.
Hydrogen peroxide (H2O2) mediates the biology of wound healing, apoptosis, inflammation, etc. H2O2 has been fluorometrically imaged with protein‐ or small‐molecule‐based probes. However, only protein‐based probes have afforded temporal insights within seconds. Small‐molecule‐based electrophilic probes for H2O2 require many minutes for a sufficient response in biological systems. Here, we report a fluorogenic probe that selectively undergoes a [2,3]‐sigmatropic rearrangement (seleno‐Mislow‐Evans rearrangement) with H2O2, followed by acetal hydrolysis, to produce a green fluorescent molecule in seconds. Unlike other electrophilic probes, the current probe acts as a nucleophile. The fast kinetics enabled real‐time imaging of H2O2 produced in endothelial cells in 8 seconds (much earlier than previously shown) and H2O2 in a zebrafish wound healing model. This work may provide a platform for endogenous H2O2 detection in real time with chemical probes.  相似文献   

14.
The three title compounds were obtained by reactions which mimic, with more extreme conditions, the in vivo metabolism of barbiturates. 1‐(2‐Cyclohex‐2‐enylpropionyl)‐3‐methylurea, C11H18N2O2, (I), and 2‐ethylpentanamide, C8H17NO, (III), both crystallize with two unique molecules in the asymmetric unit; in the case of (III), one unique molecule exhibits whole‐molecule disorder. 2‐Ethyl‐5‐methylhexanamide, C9H19NO, (II), crystallizes as a fully ordered molecule with Z′ = 1. In the crystal structures, three different hydrogen‐bonding motifs are observed: in (I) a combination of R22(4) and R22(8) motifs, and in (II) and (III) a combination of R42(8) and R22(8) motifs. In all three structures, one‐dimensional ribbons are formed by N—H...O hydrogen‐bonding interactions.  相似文献   

15.
Crystallization of 5,5′‐diphenyl‐2,2′‐(p‐phenylene)di‐1,3‐oxazole (POPOP), C24H16N2O2, from chloroform or 1,4‐dioxane yielded crystals in pure and solvated forms, respectively. The solvated crystals of POPOP were found to contain 1,4‐dioxane in a strict 1:2 compound–solvent stoichiometry, C24H16N2O2·C4H8O2, thus being a defined solvent‐inclusion compound. The crystal system is monoclinic in both cases and the asymmetric unit of the cell contains only half of the molecule (plus one dioxane molecule in the case of the solvated structure), owing to the centrosymmetry of the di‐1,3‐oxazole molecule.  相似文献   

16.
The interaction of the antifungal pharmaceutical agent fluconazole with salicylic acid in acetonitrile solution yields the 1:1 cocrystal 2‐(2,4‐difluorophenyl)‐1,3‐bis(1H‐1,2,4‐triazol‐1‐yl)propan‐2‐ol–2‐hydroxybenzoic acid (1/1), C13H12F2N6O·C7H6O3. The asymmetric unit consists of one molecule of fluconazole and one molecule of salicylic acid, both in their neutral forms. Both crystal agents form head‐to‐tail hydrogen‐bonded dimers, which are further connected into hydrogen‐bonded extended zigzag tapes propagating along the ac diagonal.  相似文献   

17.
The title compound, [MnCl2(C12H8N2O2)2], displays a novel supramolecular chain formed by intermolecular O—H...Cl hydrogen bonds and aromatic stacking. The molecule has crystallographically imposed twofold symmetry with the MnII atom on the twofold axis. In the 1,10‐phenanthroline‐5,6‐diol ligand, each H atom of the two hydroxy groups is oriented towards the other hydroxy O atom. Both hydroxy groups form intermolecular O—H...Cl hydrogen bonds with a single Cl atom of an adjacent molecule. These hydrogen bonds connect the molecules via operation of the molecular twofold axis and the centre of inversion of the crystal lattice, forming a doubly‐bridged one‐dimensional structure with Mn atoms as the nodes. Strong aromatic π‐stacking between two antiparallel neighbouring 1,10‐phenanthroline‐5,6‐diol ligands also helps to stabilize the chain.  相似文献   

18.
Rifampicin belongs to the family of naphthalenic ansamycin antibiotics. The first crystal structure of rifampicin in the form of the pentahydrate was reported in 1975 [Gadret, Goursolle, Leger & Colleter (1975). Acta Cryst. B 31 , 1454–1462] with the rifampicin molecule assumed to be neutral. Redetermination of this crystal structure now shows that one of the phenol –OH groups is deprotonated, with the proton transferred to a piperazine N atom, confirming earlier spectroscopic results that indicated a zwitterionic form for the molecule, namely (2S,12Z,14E,16S,17S,18R,19R,20R,21S,22R,23S,24E)‐21‐acetyloxy‐6,9,17,19‐tetrahydroxy‐23‐methoxy‐2,4,12,16,18,20,22‐heptamethyl‐8‐[(E)‐N‐(4‐methylpiperazin‐4‐ium‐1‐yl)formimidoyl]‐1,11‐dioxo‐1,2‐dihydro‐2,7‐(epoxypentadeca[1,11,13]trienimino)naphtho[2,1‐b]furan‐5‐olate pentahydrate, C43H58N4O12·5H2O. The molecular structure of this antibiotic is stabilized by a system of four intramolecular O—H...O and N—H...N hydrogen bonds. Four of the symmetry‐independent water molecules are arranged via hydrogen bonds into helical chains extending along [100], whereas the fifth water molecule forms only one hydrogen bond, to the amide group O atom. The rifampicin molecules interact via O—H...O hydrogen bonds, generating chains along [001]. Rifampicin pentahydrate is isostructural with recently reported rifampicin trihydrate methanol disolvate.  相似文献   

19.
The asymmetric unit in the structure of the title compound, [K2(C9H4O9S)(H2O)2]n, consists of two eight‐coordinated KI cations, one 2,4‐dicarboxy‐5‐sulfonatobenzoate dianion (H2SBTC2−), one bridging water molecule and one terminal coordinated water molecule. One KI cation is coordinated by three carboxylate O atoms and three sulfonate O atoms from four H2SBTC2− ligands and by two bridging water molecules. The second KI cation is coordinated by four sulfonate O atoms and three carboxylate O atoms from five H2SBTC2− ligands and by one terminal coordinated water molecule. The KI cations are linked by sulfonate groups to give a one‐dimensional inorganic chain with cage‐like K4(SO3)2 repeat units. These one‐dimensional chains are bridged by one of the carboxylic acid groups of the H2SBTC2− ligand to form a two‐dimensional layer, and these layers are further linked by the remaining carboxylate groups and the benzene rings of the H2SBTC2− ligands to generate a three‐dimensional framework. The compound displays a photoluminescent emission at 460 nm upon excitation at 358 nm. In addition, the thermal stability of the title compound has been studied.  相似文献   

20.
Single crystals of Ag(Nic)2(NO3) were obtained from an aqueous solution of silver nitrate and nicotine as plate‐like colourless crystals. The crystal structure (monoclinic, P21, Z = 2, a = 933.3(2), b = 1136.8(2), c = 1024.3(2) pm, β = 94.49(2)°) consists of helical chains in which one nicotine molecule bridges with both the pyridine‐N and the pyrrol‐N coordinating and with a second nicotine molecule terminally coordinating with the pyridine‐N. A monodentate nitrate‐O is completing the coordination sphere of Ag+ to a distorted tetrahedron. Ag–N distances (229‐240 pm) attest for a rather strong attraction of the nicotine molecules to Ag(I) and thereby constitute essentially a one‐dimensional, helical coordination polymer according to the formulation Ag(Nic1)2/2(Nic2)1/1(NO3)1/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号