首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A practical approach towards N‐glycopeptide synthesis using an auxiliary‐mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N‐linked glycosyl auxiliary to the thioester side chain of an N‐terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C‐terminal thioester oligopeptide. Mild cleavage provides the desired N‐glycopeptide.  相似文献   

2.
Elaiophylin is an unusual C2‐symmetric antibiotic macrodiolide produced on a bacterial modular polyketide synthase assembly line. To probe the mechanism and selectivity of diolide formation, we sought to reconstitute ring formation in vitro by using a non‐natural substrate. Incubation of recombinant elaiophylin thioesterase/cyclase with a synthetic pentaketide analogue of the presumed monomeric polyketide precursor of elaiophylin, specifically its N‐acetylcysteamine thioester, produced a novel 16‐membered C2‐symmetric macrodiolide. A linear dimeric thioester is an intermediate in ring formation, which indicates iterative use of the thioesterase active site in ligation and subsequent cyclization. Furthermore, the elaiophylin thioesterase acts on a mixture of pentaketide and tetraketide thioesters to give both the symmetric decaketide diolide and the novel asymmetric hybrid nonaketide diolide. Such thioesterases have potential as tools for the in vitro construction of novel diolides.  相似文献   

3.
The visualization and characterization of protein pockets is the starting point for many structure‐based drug design projects. The size and shape of protein pockets dictate 3D geometry of ligands that can strongly inhibit the following biological events. Thus, a minimal requirement for inhibition is that a molecule sterically binds the active site with some allowance for induced fit. Methods for direct display of active sites in a protein have become prevalent in recent years. In this study, a new mapping method, generative topographic mapping, is investigated to describe the 3D surface of protein pocket. The β2 receptor protein is used as a benchmark. By mapping the molecular surface points and assigning the associated molecular electrostatic potential (MEP) values, the original 3D structure of the active site is well reproduced by the 2D latent map in generative topographic mapping. The distributions of MEP values of two 2D latent maps derived from the inhibitor and the β2 receptor protein are well complemented. Using three‐way partial least squares modeling, a predictive model linking the inhibitory activity and their MEP values can be constructed, which was not feasible in the previous spherical self‐organizing map studies. The resulting regression coefficient matrix of the three‐way partial least squares model has many insights for understanding the structural requirements for β2 inhibitory activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The reaction mechanism for the biomimetic synthesis of tryptophan from indole and serine in the presence of Ac2O in AcOH was investigated. Although the time‐course 1H‐NMR spectra of the reaction of 5‐methoxyindole with N‐acetylserine were measured in the presence of (CD3CO)2O in CD3CO2D, the reactive intermediate could not be detected. This reaction was conducted without 5‐methoxyindole in order to elucidate the reactive intermediate, but the intermediate could not be isolated from the reaction mixture. Since the intermediate would be expected to have a very short life time, and therefore be very difficult to detect by conventional analytical methods, the structure of the intermediate was elucidated using a 2D‐NMR technique, diffusion‐ordered spectroscopy (DOSY). Two intermediates were detected and confirmed to be 2‐methyl‐4‐methyleneoxazol‐5(4H)‐one and 2‐methyl‐4‐hydroxymethyloxazol‐5(4H)‐one. The present results demonstrated that DOSY is a powerful tool for the detection of unstable intermediates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Enzyme‐mediated protein modification often requires large amounts of biocatalyst, adding significant costs to the process and limiting industrial applications. Herein, we demonstrate a scalable and straightforward strategy for the efficient capture and recycling of enzymes using a small‐molecule affinity tag. A proline variant of an evolved sortase A (SrtA 7M) was N‐terminally labeled with lithocholic acid (LA)—an inexpensive bile acid that exhibits strong binding to β‐cyclodextrin (βCD). Capture and recycling of the LA‐Pro‐SrtA 7M conjugate was achieved using βCD‐modified sepharose resin. The LA‐Pro‐SrtA 7M conjugate retained full enzymatic activity, even after multiple rounds of recycling.  相似文献   

6.
Streptothricin‐F (STT‐F), one of the early‐discovered antibiotics, consists of three components, a β‐lysine homopolymer, an aminosugar D ‐gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long‐lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high‐resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an FeII‐dependent double hydroxylation reaction converting L ‐Arg into (3R,4R)‐(OH)2‐L ‐Arg via (3S)‐OH‐L ‐Arg, while OrfR catalyzes an unusual PLP‐dependent elimination/addition reaction cyclizing (3R,4R)‐(OH)2‐L ‐Arg to the six‐membered (4R)‐OH‐capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT‐F by a feeding experiment.  相似文献   

7.
A Cyclic aryl thioester dimer was prepared by the reaction of o-phthaloyl dichloride and bis(4-mercaptophenyl)sulfide in good yield under pseudo-high dilution conditions via interfacial polycondensation.The structure of the cyclic dimer was confirmed by a conmbination of MALDI-TOF-Ms,FTIR,gel permeation chromatography and NMR analyses.The X-ray diffraction study of the single crystal of cyclic thioester dimer obtained form two sotutions reveals no severe internal strain on the cyclic structure.  相似文献   

8.
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T‐cells and acts as a chemoattractant for monocytes. 1 Originally, CCL1 was identified as a 73 amino acid protein having one N‐glycosylation site, 1 and a variant 74 residue non‐glycosylated form, Ser‐CCL1, has also been described. 2 There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser‐CCL1. Here we report the total chemical syntheses of both N‐glycosylated and non‐glycosylated forms of (Ser‐)CCL1, by convergent native chemical ligation. We used an N‐glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide‐αthioester building block. 3 Chemotaxis assays of these glycoproteins and the corresponding non‐glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser‐)CCL1 using homogeneous N‐glycosylated protein molecules of defined covalent structure.  相似文献   

9.
3-Hydroxyisobutyryl-CoA hydrolase (HICH), a member of the enoyl-CoA (crotonase) superfamily, catalyzes the hydrolysis of 3-hydroxyisobutyryl-CoA to 3-hydroxyisobutyrate. Like other members of the superfamily, the sequence of HICH contains conserved sequences for an oxyanion hole that stabilizes anionic intermediates. In contrast to most members of the superfamily, the reaction catalyzed by HICH does not proceed via formation of a thioester enolate anion; instead, evidence based on substrate deuterium isotope effects, the reactivity of substrate analogues that cannot form thioester enolate anions, single-turnover experiments in H218O, and the kinetic phenotypes of site-directed mutants provide evidence for a mechanism involving the formation of an anhydride intermediate involving Glu143 in the active site. In the reactions catalyzed by many members of the superfamily, homologues of Glu143 abstract the alpha proton of the thioester substrate to generate the thioester enolate anion intermediate. Presumably, one or more of the anionic tetrahedral intermediates on the HICH reaction coordinate are stabilized by the oxyanion hole. Thus, we conclude that the conserved oxyanion hole in this superfamily can be used to stabilize a variety of anionic intermediates.  相似文献   

10.
Protein bioconjugation has been a crucial tool for studying biological processes and developing therapeutics. Sortase A (SrtA), a bacterial transpeptidase, has become widely used for its ability to site‐specifically label proteins with diverse functional moieties, but a significant limitation is its poor reaction kinetics. In this work, we address this by developing proximity‐based sortase‐mediated ligation (PBSL), which improves the ligation efficiency to over 95 % by linking the target protein to SrtA using the SpyTag–SpyCatcher peptide–protein pair. By expressing the target protein with SpyTag C‐terminal to the SrtA recognition motif, it can be covalently captured by an immobilized SpyCatcher–SrtA fusion protein during purification. Following the ligation reaction, SpyTag is cleaved off, rendering PBSL traceless, and only the labeled protein is released, simplifying target protein purification and labeling to a single step.  相似文献   

11.
Forsythia suspensa contains C6‐C2 glucoside conjugates (CCGCs) that are chemically unstable, thereby hindering their isolation and purification. In the present study, ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐QTOF) was utilized to screen and identify unstable CCGCs in the fruits and leaves of F. suspensa without any tedious isolation and purified process based on independent information acquisition (also called MSE) and individual MS/MS experiments. Diagnostic product ion filtering (DPIF) was further applied to mine unknown analogs in MSE high energy levels based on characteristic m/z of key substructures. A modified nomenclature for CCGCs is hereby proposed to facilitate discussions. Possible fragmentation pathways of major types of known CCGCs were proposed and used for deducing their structures. A total of 8 potentially new CCGCs were discovered and initially identified. The accuracy of their identification was further verified by structural elucidation of 3 unstable CCGCs isolated from the fruits of F. suspensa using 1D and 2D‐NMR spectroscopy. The established UPLC‐QTOF‐MSE‐based DPIF technique facilitates the rapid discovery and direct identification of unstable CCGCs in fruits and leaves of F. suspensa .  相似文献   

12.
The relationship between peptide structure and electron transfer dissociation (ETD) is important for structural analysis by mass spectrometry. In the present study, the formation, structure and reactivity of the reaction intermediate in the ETD process were examined using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. ETD product ions of zwitterionic tryptophan (Trp) and Trp‐containing dipeptides (Trp‐Gly and Gly‐Trp) were detected without reionization using non‐covalent analyte complexes with Ca2+ and 18‐crown‐6 (18C6). In the collision‐induced dissociation, NH3 loss was the main dissociation pathway, and loss related to the dissociation of the carboxyl group was not observed. This indicated that Trp and its dipeptides on Ca2+(18C6) adopted a zwitterionic structure with an NH3+ group and bonded to Ca2+(18C6) through the COO? group. Hydrogen atom loss observed in the ETD spectra indicated that intermolecular electron transfer from a molecular anion to the NH3+ group formed a hypervalent ammonium radical, R‐NH3, as a reaction intermediate, which was unstable and dissociated rapidly through N–H bond cleavage. In addition, N–Cα bond cleavage forming the z1 ion was observed in the ETD spectra of Trp‐GlyCa2+(18C6) and Gly‐TrpCa2+(18C6). This dissociation was induced by transfer of a hydrogen atom in the cluster formed via an N–H bond cleavage of the hypervalent ammonium radical and was in competition with the hydrogen atom loss. The results showed that a hypervalent radical intermediate, forming a delocalized hydrogen atom, contributes to the backbone cleavages of peptides in ETD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The conversion of simple, easily available urea‐substituted 3‐phenylpropargyl alcohols catalyzed by a simple IPr–gold(I) catalyst in a gold(I)‐catalyzed cascade reaction composing of a gold‐catalyzed nucleophilic addition and a subsequent gold‐catalyzed substitution reaction delivers 1H‐imidazo[1, 5?a]indol‐3(2 H)‐ones. Other gold(I) catalysts or silver catalysts gave lower yields and often gave other side products. Gold(III) and copper(II) catalysts decomposed the starting material. Twelve examples, including donor and acceptor substituents on the distal nitrogen of the urea substructure, are provided. An X‐ray crystal structure analysis confirmed the structural assignment. The mechanistic investigation including isolation and further conversion of intermediates and reactions with enantiopure starting materials indicated that after the nucleophilic‐addition step, the substrate undergoes an SN1‐type benzylic substitution reaction at the indolyl alcohol intermediate or an intramolecular hydroamination reaction of the 2‐vinylindole intermediate.  相似文献   

15.
Numerous single‐site mutants of photoactive yellow protein (PYP) from Halorhodospira halophila and as well as PYP homologs from other species exhibit a shoulder on the short wavelength side of the absorbance maximum in their dark‐adapted states. The structural basis for the occurrence of this shoulder, called the “intermediate spectral form,” has only been investigated in detail for the Y42F mutation. Here we explore the structural basis for occurrence of the intermediate spectral form in a M121E derivative of a circularly permuted H. halophila PYP (M121E‐cPYP). The M121 site in M121E‐cPYP corresponds to the M100 site in wild‐type H. halophila PYP. High‐resolution NMR measurements with a salt‐tolerant cryoprobe enabled identification of those residues directly affected by increasing concentrations of ammonium chloride, a salt that greatly enhances the fraction of the intermediate spectra form. Residues in the surface loop containing the M121E (M100E) mutation were found to be affected by ammonium chloride as well as a discrete set of residues that link this surface loop to the buried hydroxyl group of the chromophore via a hydrogen bond network. Localized changes in the conformational dynamics of a surface loop can thereby produce structural rearrangements near the buried hydroxyl group chromophore while leaving the large majority of residues in the protein unaffected.  相似文献   

16.
The D‐galactose‐H+ symport protein, GalP, of Escherichia coli is the bacterial homologue of the human glucose transport protein, GLUT1. Here we demonstrate that mass spectrometry can be used to map modification by covalently bound reagents, and also to detect structural changes in the GalP protein that occur upon substrate binding. The small thiol‐group‐specific reagent N‐ethylmaleimide (NEM) was used to modify the cysteine residues in GalP(His)6 both alone and in the presence of D‐glucose, a known substrate. Employing a mixture of proteolysis and thermal degradation methods, the three cysteine residues were found to undergo sequential reactions with NEM, with Cys374 being modified first, followed by Cys389 and finally Cys19, thus indicating their different accessibilities within the three‐dimensional structure of the protein. Prior binding of the substrate D‐glucose to the protein protected Cys19 and Cys374 against NEM modification, but not Cys389. Cys374 had been expected to be shielded by D‐glucose binding while Cys389 had been expected to be unaffected, consistent with their proposed respective locations in the vicinity of, and distant from, the sugar binding site. However, the inaccessibility of Cys19 was unexpected and suggests a structural change in the protein promoted by D‐glucose binding which changes the proximity of Cys19 with respect to the D‐glucose‐binding site. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The method of native chemical ligation between an unprotected peptide α‐thioester and an N‐terminal cysteine–peptide to give a native peptide in aqueous solution is one of the most effective peptide ligation methods. In this work, a systematic theoretical study was carried out to fully understand the detailed mechanism of ligation. It was found that for the conventional native chemical ligation reaction between a peptide thioalkyl ester and a cysteine in combination with an added aryl thiol as catalyst, both the thiol‐thioester exchange step and the transthioesterification step proceed by an anionic concerted SN2 displacement mechanism, whereas the intramolecular rearrangement proceeds by an addition–elimination mechanism, and the rate‐limiting step is the thiol‐thioester exchange step. The theoretical method was then extended to study the detailed mechanism of the auxiliary‐mediated peptide ligation between a peptide thiophenyl ester and an N‐2‐mercaptobenzyl peptide in which both the thiol‐thioester exchange step and intramolecular acyl‐transfer step proceed by a concerted SN2‐type displacement mechanism. The energy barrier of the thiol‐thioester exchange step depends on the side‐chain steric hindrance of the C‐terminal amino acid, whereas that of the acyl‐transfer step depends on the side‐chain steric hindrance of the N‐terminal amino acid.  相似文献   

18.
Four kinds of functional polyethylene carrying thioester pendants were synthesized via ring‐opening metathesis polymerization (ROMP) of alkyl cyclopent‐3‐enecarbothioate catalyzed by a ruthenium‐based commercial catalyst and subsequent hydrogenation of the ROMP products (alkyl = ethyl, n‐butyl, n‐octyl, or n‐dodecyl). In these polymers the pendant alkyl thioester groups are precisely distributed along the backbone on every five methylene carbons. Chain structure, molecular weight and molecular weight distribution of the polymers were characterized by 1H and 13C NMR, and GPC. The ROMP reactions all reached high monomer conversions, and hydrogenation of the ROMP products were exhaustive. Thermal transitions and side chain crystallization behaviors of the polymer were investigated and characterized by DSC and TGA. Glass transition temperature and melting temperature of these polymers were higher than the counterparts containing ester pendants. TGA analysis indicated that all the thioester‐containing polymers exhibited moderate thermal stability, and the sulfur‐containing polymers show slightly lower thermal stability than their counterparts without sulfur. The new family of functionalized polyethylenes could be used as models of ethylene‐thioacrylate copolymers, and find applications as novel functional materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4027–4036  相似文献   

19.
Zero‐field splitting (ZFS) tensors ( D tensors) of organic high‐spin oligonitrenes/oligocarbenes up to spin‐septet are quantitatively determined on the basis of quantum chemical calculations. The spin–orbit contributions, D SO tensors are calculated in terms of a hybrid CASSCF/MRMP2 approach, which was recently proposed by us. The spin–spin counterparts, D SS tensors are computed based on McWeeny–Mizuno’s equation in conjunction with the RODFT spin densities. The present calculations show that more than 10 % of ZFS arises from spin–orbit interactions in the high‐spin nitrenes under study. Contributions of spin‐bearing site–site interactions are estimated with the aid of a semi‐empirical model for the D tensors and found to be ca. 5 % of the D SO tensor. The analysis of intermediate states reveal that the largest contributions to the calculated D SO tensors are attributed to intra‐site spin flip excitations and delocalized π and π* orbitals play an important role in the inter‐site spin–orbit interactions.  相似文献   

20.
Blocking quorum sensing (QS) pathways has attracted considerable interest as an approach to suppress virulence in bacterial pathogens. Toward this goal, we recently developed analogues of a native autoinducing peptide (AIP‐III) signal that can inhibit AgrC‐type QS receptors and attenuate virulence phenotypes in Staphylococcus aureus. Application of these compounds is limited, however, as they contain hydrolytically unstable thioester linkages and have only low aqueous solubilities. Herein, we report amide‐linked AIP analogues with greatly enhanced hydrolytic stabilities and solubilities relative to our prior analogues, whilst maintaining strong potencies as AgrC receptor inhibitors in S. aureus. These compounds represent powerful tools for the study of QS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号