首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas-phase reactions of W-, Si-, P-, Br-, and I-containing ions with the target molecule perfluorohexane at low collision energies (<15 eV) parallel known ion/surface reactions of the same projectile ions at fluorinated self-assembled monolayer surfaces. Charge exchange, dissociative charge exchange, and fluorine atom abstraction are observed and the majority of the projectile ions also undergo reactive charge exchange to produce specific fluorocarbon fragment ions of the target molecule in distinctive relative abundances. Abstraction of up to five fluorine atoms is observed upon collision of W+ with gaseous perfluorohexane, while similar experiments with CI+, SiCl+, and PCl show abstraction of one or two fluorine atoms. Other projectiles, including Si, PCl 2 + , Br+, CBr+, and I+, abstract only a single fluorine atom. These patterns of fluorine atom abstraction are similar to those observed in ion/surface collisions. Also paralleling the ion/surface reactions, halogen exchange (Cl-for-F) reactions occur between the Cl-containing projectile ions and perfluorohexane to produce C6F12Cl+, a product of chemical modification of the target. Collisions of PCl and PCl 2 + also result in production of C6F 12 , indicating that the corresponding surface modification reaction involving molecular defluorination should be sought. Implications for previously proposed mechanisms, new ion/surface reactions, and for the use of gas-phase studies to guide investigations of the ion/surface reactions are discussed.  相似文献   

2.
Adsorptions of CH°2, CH°3, NH°2, and OH° radicals and molecule formation on a partially hydrogenated surface of a polycyclic aromatic hydrocarbon (PAH) (C24H27+) were modeled. It was found that radical adsorptions are feasible with important modifications of surface bond strengths and bond distances. Adsorbed hydrogen may diffuse due to adsorbate‐surface interactions. Formations of CH4, NH3, H2O, CH3NH2, and CH3OH were studied by Eley‐Rideal (ER) and Langmuir‐Hishelwood (LH) mechanisms. Potential energetic surfaces were performed for both mechanisms and the ER presents lower reaction energy barriers than the LH one, in all cases. Parametric quantum program (CATIVIC) was employed and comparisons with DFT results were performed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2560–2572, 2010  相似文献   

3.
The interaction of H2 and O2 molecules in the presence of nitrogen‐doped graphene decorated with either a palladium or gold atom was investigated by using density functional theory. It was found that two hydrogen molecules were adsorbed on the palladium atom. The interaction of these adsorbed hydrogen molecules with two oxygen molecules generates two hydrogen peroxide molecules first through a Eley–Rideal mechanism and then through a Langmuir–Hinshelwood mechanism. The barrier energies for this reaction were small; therefore, we expect that this process may occur spontaneously at room temperature. In the case of gold, a single hydrogen molecule is adsorbed and dissociated on the metal atom. The interaction of the dissociated hydrogen molecule on the surface with one oxygen molecule generates a water molecule. The competitive adsorption between oxygen and hydrogen molecules slightly favors oxygen adsorption.  相似文献   

4.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   

5.
The O2 activation and CO oxidation on nitrogen‐doped C59N fullerene are investigated using first‐principles calculations. The calculations indicate that the C59N fullerene is able to activate O2 molecules resulting in the formation of superoxide species ( ) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO2 via the Eley–Rideal mechanism by passing a stepwise reaction barrier of only 0.20 eV. Ab initio molecular dynamics (AIMD) simulation is carried out to evidence the feasibility of the Eley–Rideal mechanism. In addition, the second CO oxidation takes place with the remaining atomic O without any activation energy barrier. The full catalytic reaction cycles can occur energetically favorable and suggest a two‐step Eley–Rideal mechanism for CO oxidation with O2 catalyzed by the C59N fullerene. The catalytic properties of high percentage nitrogen‐doped fullerene (C48N12) is also examined. This work contributes to designing higher effective carbon‐based materials catalysts by a dependable theoretical insight into the catalytic properties of the nitrogen‐doped fullerene. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Active sites in carbon‐catalyzed phosgene synthesis from gaseous CO and Cl2 have been identified using C60 fullerene as a model catalyst. The carbon atoms distorted from sp2 coordination in non‐planar carbon units are concluded to generate active Cl2. Experiments and density functional theory calculations indicate the formation of a surface‐bound [C60???Cl2] chlorine species with radical character as key intermediate during phosgene formation. It reacts rapidly with physisorbed CO in a two‐step Eley–Rideal‐type mechanism.  相似文献   

7.
The mol­ecular structures of the complexes imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate, C3H5N2+·C22H28O4PS, (I), and imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate diisopropyl hydrazo­dicarboxyl­ate hemisolvate, C3H5N2+·C22H28O4PS·0.5C8H16N2O4, (II), have been determined. While (I) forms the expected hydrogen‐bonded chain utilizing the two imidazole N‐bound H atoms, in (II), the substituted hydrazine solvent mol­ecule inserts itself between the chains. Compound (I) exhibits a strong N—H⋯O hydrogen bond, with an N⋯O distance of 2.603 (2) Å. The hydrazine solvent molecule in (II) lies about a twofold axis and the N‐bound H atoms are involved in bifurcated hydrogen bonds with phosphate O atoms. A C‐bound H atom of the imidazolium cation is involved in a C—H⋯O inter­action with a carbonyl O atom of the hydrazine solvent mol­ecule.  相似文献   

8.
The crystal structure of catena‐poly­[[(6‐carboxy­pyridine‐2‐carb­oxyl­ato‐κ3O,N,O′)­lithium(I)]‐μ‐aqua‐κ2O:O], [Li(C7H4NO4)­(H2O)]n, contains the Li+ ion coordinated to two O atoms and the N atom of the 6‐carboxy­pyridine‐2‐carboxyl­ate ligand, and to two water O atoms, forming a pentavalent coordination geometry. The molecule resides on a mirror plane which contains the Li and N atoms, the para‐CH unit, and the O atom of the coordinated water mol­ecule. The O atom of the water mol­ecule is coordinated to two Li atoms, forming an infinite polymeric chain.  相似文献   

9.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

10.
The polymerization of ethylene on a chromic oxide catalyst with and without a solvent has been studied. It was found that the active catalyst surface is formed exclusively as a result of its interaction with ethylene. This interaction is accompanied by the formation of products which poison the surface of the catalyst when they are sorbed on it in the absence of a solvent. A catalyst which contains no Cr+6 atoms as a result of reduction by alcohol is inactive. On the other hand, a catalyst which contains only Cr+6 atoms becomes active only after it has been partially reduced. The most probable product of this reduction is trivalent chromium atoms. The results obtained have given grounds for the assumption that the active complex contains Cr+6 and Cr+3 atoms. A possible mechanism of the reaction is discussed. Owing to the oxidative action of CrO3 on the ethylene molecules, part of the Cr+6 is reduced to Cr+3, and the trivalent chromium becomes alkylated. The monomer molecule is added at the Cr+3—C bond thus formed. A strong Lewis acid, CrO3, lowers the electron density on the Cr+3 atom. This increases the strength of the Cr+3—C bond and the ability of the Cr+3 atom to coordinate with the monomer molecule. The monomer molecule enters the chain at the moment when the strength of the Cr?3—C bond is weakened due to coordination of this molecule with the Cr+3 atom.  相似文献   

11.
The dimeric title copper(II) complex, diaqua‐1κO,2κO‐bis[3,9‐dimethyl‐6‐(2‐pyridyl­methyl)‐4,8‐di­aza­undeca‐3,8‐di­ene‐2,10‐dione dioximato(1?)]‐1k4N2,N4,N8,N10;1:2κ5O2:N2,N4,N8,N10‐dicopper(II) diperchlorate, [Cu2(C17H24N5O2)2](ClO4)2, crys­tallizes with one Cu atom in a square‐pyramidal environment and the other Cu atom displaying a distorted octahedral coordination. In each case, the four N atoms in the core of the ligand (two imine and two oxime N atoms) form the base of the pyramid, with a water mol­ecule at an apex. The two parts of the dimer are linked by an interaction [2.869 (2) Å] between one of the Cu atoms and one of the oxime O atoms coordinated to the second Cu atom, and also by a hydrogen bond between the apical water mol­ecule on the second Cu atom and the pyridyl N atom from the coordination sphere of the first Cu atom. The pyridyl N atoms of the lariat arms are not coordinated to either of the Cu atoms. Thus, this potentially pentadentate ligand is only tetradentate when coordinated to CuII.  相似文献   

12.
The thermal ion/molecule reactions (IMRs) of the Group 14 metal oxide radical cations MO . + (M=Ge, Sn, Pb) with methane and ethene were investigated. For the MO . +/CH4 couples abstraction of a hydrogen atom to form MOH+ and a methyl radical constitutes the sole channel. The nearly barrier‐free process, combined with a large exothermicity as revealed by density functional theory (DFT) calculations, suggests a fast and efficient reaction in agreement with the experiment. For the IMR of MO . + with ethene, two competitive channels exist: hydrogen‐atom abstraction (HAA) from and oxygen‐atom transfer (OAT) to the organic substrate. The HAA channel, yielding C2H3 . and MOH+ predominates for the GeO . +/ethene system, while for SnO . + and PbO . + the major reaction observed corresponds to the OAT producing M+ and C2H4O. The DFT‐derived potential‐energy surfaces are consistent with the experimental findings. The behavior of the metal oxide cations towards ethene can be explained in terms of the bond dissociation energies (BDEs) of MO+? H and M+? O, which define the hydrogen‐atom affinity of MO+ and the oxophilicity of M+, respectively. Since the differences among the BDEs(MO+? H) are rather small and the hydrogen‐atom affinities of the three radical cations MO . + exceed the BDE(CH3? H) and BDE(C2H3? H), hydrogen‐atom abstraction is possible thermochemically. In contrast, the BDEs(M+? O) vary quite substantially; consequently, the OAT channel becomes energetically less favorable for GeO . + which exhibits the highest oxophilicity among these three group 14 metal ions.  相似文献   

13.
The redox and carbonyl mechanisms of the water gas shift reaction (WGSR) catalyzed by the single noble metal (NM) atoms of Ru, Rh, Pd, Ag (from the 4d row) and Os, Ir, Pt, Au (from the 5d row) supported on vanadium oxide cluster ion V2O6+ have been firstly investigated through the density functional theory (DFT) calculations. Natural population analysis (NPA) shows NMs possess positive charges in the model systems and usually act as reactant molecule trapper and an effective electron store to accept or release electrons. The carbonyl mechanism avoiding the oxygen vacancy (Ov) formation and directing NM‐H bond cleavage is strongly preferred over the redox mechanism. Our computations identified single‐atom catalysts (SAC), especially RhV2O6+ and PdV2O6+ exhibit improved overall catalytic performance because of the lower rate‐control step activation barriers via the associate carbonyl mechanism. This work aims to provide some detailed insights into the effects of NM in bimetallic oxide clusters for WGSR at a molecular level, and serves as a starting point for further theoretical studies on the mechanisms of related SAC catalytic reactions.  相似文献   

14.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

15.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

16.
The structure of the title compound, C15H27N2+·ClO4?, consists of a monoprotonated sparteinium cation and a perchlorate anion. The two tertiary N atoms of the cation, one perchlorate O atom and a H atom form a bifurcated hydrogen bond, the four hydrogen‐bonding atoms being nearly in the same plane.  相似文献   

17.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

18.
Ion/molecule reactions of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) in 28‐Torr N2 plasma generated by a hollow cathode discharge ion source were investigated using an Orbitrap mass spectrometer. It was found that the ions with [M+14]+ were observed as the major ions (M: sample molecule). The exact mass analysis revealed that the ions are nitrogenated molecules, [M+N]+ formed by the reactions of N3+ with M. The reaction, N3+ + M → [M+N]+ + N2, were examined by the density functional theory calculations. It was found that N3+ abstracts the H atom from hydrocarbon molecules leading to the formation of protonated imines in the forms of R′R″C?NH2+ (i.e. C–H bond nitrogenation). This result is in accord with the fact that elimination of NH3 is the major channel for MS/MS of [M+N]+. That is, nitrogen is incorporated in the C–H bonds of saturated hydrocarbons. No nitrogenation was observed for benzene and acetone, which was ascribed to the formation of stable charge‐transfer complexes benzene????N3+ and acetone????N3+ revealed by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In the title compound, C9H13N4O2+·I·0.5H2O, the non‐H atoms of the ionic components lie on a mirror plane in Cmca, with the O atom of the partial water molecule lying on a twofold rotation axis. Whereas one of the methoxy methyl groups is directed away from the adjacent N‐methyl group, the other methoxy methyl group is directed towards its adjacent N‐methyl group. The conformation of the methoxy methyl groups provides an explanation for the outcomes of intramolecular thermal rearrangements of 2,6‐dialkoxy‐7,9‐dimethylpurinium salts.  相似文献   

20.
In recent years, the discovery of efficient catalyst with low price to cyanide (CN) oxidation in normal temperature is a major concern in the industry. In present study, in first step the carbon nanotubes (CNTss) were doped with Ge and the surface of Ge-doped CNTss via O2 molecule were activated. In second step the CN oxidation on activated Ge-CNTss surface via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms was investigated. Results show that O2 activated Ge-CNTs surface can oxidize the CN molecule via Ge-CNTs–O–O* + CN → Ge-CNTs–O–O*–CN → Ge-CNTs–O* + OCN and Ge-CNTs–O* + CN → Ge-CNTs + OCN reactions. Results show that CN oxidation on activated Ge-CNTs surface via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that activated Ge-CNTss is acceptable catalyst with low price and high performance for CN oxidation in normal temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号