首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nanoscale confinement on the glass transition temperature, Tg, of freely standing polystyrene (PS) films was determined using the temperature dependence of a fluorescence intensity ratio associated with pyrene dye labeled to the polymer. The ratio of the intensity of the third fluorescence peak to that of the first fluorescence peak in 1-pyrenylmethyl methacrylate-labeled PS (MApyrene-labeled PS) decreased with decreasing temperature, and the intersection of the linear temperature dependences in the rubbery and glassy states yielded the measurement of Tg. The sensitivity of this method to Tg was also shown in bulk, supported PS and poly(isobutyl methacrylate) films. With free-standing PS films, a strong effect of confinement on Tg was evident at thicknesses less than 80–90 nm. For MApyrene-labeled PS with Mn = 701 kg mol−1, a 41-nm-thick film exhibited a 47 K reduction in Tg relative to bulk PS. A strong molecular weight dependence of the Tg-confinement effect was also observed, with a 65-nm-thick free-standing film exhibiting a reduction in Tg relative to bulk PS of 19 K with Mn = 701 kg mol−1 and 31 K with Mn = 1460 kg mol−1. The data are in reasonable agreement with results of Forrest, Dalnoki-Veress, and Dutcher who performed the seminal studies on Tg-confinement effects in free-standing PS films. The utility of self-referencing fluorescence for novel studies of confinement effects in free-standing films is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2754–2764, 2008  相似文献   

2.
Commercial polydisperse atactic poly(methyl methacrylate) (PMMA) exhibits a decreased glass transition temperature (Tg) when the film thickness is less than ~60 nm, whereas more model atactic PMMA shows an increased Tg in thin films supported on clean silicon wafers. NMR indicates no difference in tacticity, so the divergent thin film behavior appears related to the relative distribution of molecular mass. Extraction of some low molecular weight PMMA components from the commercial sample results in a significant modification of the thin film Tg compared with the initial PMMA fraction. The extracted sample exhibits initially a slight decrease in Tg as the film thickness is reduced below ~60 nm, but then Tg appears to increase for films thinner than 20 nm. These results illustrate the sensitivity of polymer thin film properties to low‐molecular mass components and could explain some of the contradictory reports on the Tg of polymer thin films that exist in the literature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

3.
The surface molecular motion of monodisperse polystyrene (PS) with various chain end groups was investigated on the basis of temperature‐dependent scanning viscoelasticity microscope (TDSVM). The surface glass transition temperatures, Tgss for the proton‐terminated PS (PS‐H) films with number‐average molecular weight, Mn of 4.9k–1,450k measured by TDSVM measurement were smaller than those for the bulk one, with corresponding Mns, and the Tgss for Mn smaller than ca. 50k were lower than room temperature (293 K). In the case of Mn = ca. 50k, the Tgss for the α,ω‐diamino‐terminated PS (α,ω‐PS(NH2)2) and α,ω‐dicarboxy‐terminated PS (α,ω‐PS(COOH)2) films were higher than that of the PS‐H film. On the other hand, the Tgs for the α,ω‐perfluoroalkylsilyl‐terminated PS (α,ω‐PS(SiC2CF6)2) film with the same Mn was much lower than those for the PS films with all other chain ends. The change of Tgs for the PS film with various chain end groups can be explained in terms of the depth distribution of chain end groups at the surface region.  相似文献   

4.
Surface molecular motions of amorphous polymeric solids have been directly measured on the basis of scanningviscoelasticity microscopic (SVM) and lateral force microscopic (LFM) measurements. SVM and LFM measurements werecarried out for films of conventional monodisperse polystyrene (PS) with sec-butyl and proton-terminated end groups atroom temperature. In the case of the number-average molecular weight, M_n, less than ca. 4.0×10~4, the surface was in a glass-rubber transition state even though the bulk glass transition temperature, T_g was far above room temperature, meaning thatthe surface molecular motion was fairly active compared with that in the bulk. LFM measurements of the, monodisperse PSfilms at various scanning rates and temperatures revealed that the time-temperature superposition was applicable to thesurface mechanical relaxation behavior and also that the surface glass transition temperature, T_g~σ, was depressed incomparison with the bulk one even though the magnitude of M_n was fairly high at 1.40×10~5. The surface molecular motionof monodisperse PS with various chain end groups was investigated on the basis of temperature-dependent scanningviscoelasticity microscopy (TDSVM). The T_g~σs for the PS films with M_n of 4.9×10~6 to 1.45×10~6 measured by TDSVMwere smaller than those for the bulk one, with corresponding M_ns, and the T_g~σs for M_ns smaller than ca. 4.0×10~4 were lowerthan room temperature (293 K). The active thermal molecular motion at the polymeric solid surface can be interpreted interms of an excess free volume near the surface region induced by the surface localization of chain end groups. In the case ofM_n=ca. 5.0×10~4, the T_g~σs for the α, ω-diamino-terminated PS (α,ω-PS(NH_2)_2) and α, ω-dicarboxy-terminated PS (α, ω-PS(COOH)_2) films were higher than that of the PS film. The change of T_g~σ for the PS film with various chain end groups canbe explained in terms of the depth distribution of chain end groups at the surface region depending on the relativehydrophobicity.  相似文献   

5.
Thermodynamic analyses of surface pressure-area (Π-A) isotherms and Brewster angle microscopy (BAM) reveal that poly(ε-caprolactone) (PCL) with a weight average molar mass of Mw = 10 kg mol−1 and polydispersity index of Mw/Mn = 1.25 and poly(t-butyl acrylate) (PtBA, Mw = 25.7 kg mol−1; Mw/Mn = 1.07) form compatible blends as Langmuir films below the dynamic collapse transition for PCL at Π = 11 mN m−1. For PCL-rich blends, in situ BAM studies reveal growth of PCL crystals for compression past the PCL collapse transition. PCL crystals grown in the plateau regime of the Π-A isotherm exhibit a dendritic morphology presumably resulting from the rejection of PtBA from the growing PCL crystals and hindered diffusion of PCL from the surrounding monolayer to the crystal growth fronts. The ability to transfer the PCL dendrites as Langmuir–Schaefer films onto silicon substrates spincoated with a polystyrene layer facilitates detailed morphological characterization by optical and atomic force microscopy (AFM). AFM reveals that the dendritic branching occurs along the {100} and {110} sector boundaries and is essentially independent of composition. AFM also reveals that the average thickness of PCL dendrites formed at room temperature (22.5 °C), ∼7–8 nm, is comparable with that of PCL crystals grown from single-component PCL Langmuir films and spincoated thin films. In contrast, for PtBA-rich blend films PCL crystallization is suppressed. These findings establish PCL blends as an ideal system for exploring the interplay between chain diffusion and crystal growth in a two-dimensional confined geometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3300–3318, 2007  相似文献   

6.
The polycondensation of diamines and dialdehydes promoted by an N-heterocyclic carbene (NHC) catalyst in the presence of a quinone oxidant and hexafluoro-2-propanol (HFIP) is herein presented for the synthesis of oligomeric polyamides (PAs), which are obtained with a number-average molecular weight (Mn) in the range of 1.7–3.6 kg mol−1 as determined by NMR analysis. In particular, the utilization of furanic dialdehyde monomers (2,5-diformylfuran, DFF; 5,5’-[oxybis(methylene)]bis[2-furaldehyde], OBFA) to access known and previously unreported biobased PAs is illustrated. The synthesis of higher molecular weight PAs (poly(decamethylene terephthalamide, PA10T, Mn = 62.8 kg mol−1; poly(decamethylene 2,5-furandicarboxylamide, PA10F, Mn = 6.5 kg mol−1) by a two-step polycondensation approach is also described. The thermal properties (TGA and DSC analyses) of the synthesized PAs are reported.  相似文献   

7.
Well-defined polystyrene homopolymers with surface-adhesive triethoxysilyl end group were synthesized via living carbanionic polymerization, epoxide end-functionalization and subsequent hydrosilylation with triethoxysilane. Grafting-to performance of polymers with various molecular weight (Mn = 3000–14,000 g mol−1) to a silicon surface was examined in dependence of reaction time, polymer concentration, solvent and number of alkoxysilyl end groups. Crosslinkable polymers for surface modification were synthesized by statistical carbanionic copolymerization of 4-vinylbenzocyclobutene (4-VBCB) and styrene, followed by epoxide end-functionalization and triethoxysilane modification (Mn = 4000–14,000 g mol−1). The copolymers were characterized by 1H-NMR, THF-SEC, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. In situ 1H-NMR kinetic studies in cyclohexane-d12 provided information regarding the monomer gradient in the polymer chains, with styrene being the more reactive monomer (rs = 2.75, r4-VBCB = 0.23). Thin polymer films on silicon wafers were prepared by grafting-to surface modification under conditions derived for the polystyrene homopolymer. The traceless, thermally induced crosslinking reaction of the benzocyclobutene units was studied by DSC in bulk as well as in 3–6 nm thick polymer films. Crosslinked films were analyzed by atomic force microscopy, ellipsometry, and nanoindentation, showing smooth polymer films with an increased modulus. © 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 181–192  相似文献   

8.
The quantum yield for poly(methyl methacrylate)chain scission by ultraviolet light in the 214–229 nm wavelength region was found to be ?d = 0.03 scissions per absorbed photon. Samples were 1.65-μm films spun cast on silicon wafers and irradiated under flowing nitrogen by a cadmium vapor lamp. Gel permeation chromatography was used for molecular weight determination. Heating (postbaking) the irradiated films at 150°C for one hour under reduced-pressure flowing nitrogen increased the observed scissions per absorbed photon to 0.04. Glass transition temperatures by DSC are well-represented by Tg (K) = 393.3 ? 2.0 × 105/Mn for the postbaked samples (139,000 > Mn > 6500).  相似文献   

9.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

10.
Well-defined poly(MMA-b-DMS-b-MMA) triblock copolymers were prepared by copper(I) mediated living radical polymerization. This was achieved by polymerization of methylmethacrylate (MMA) with different concentrations of 2-bromoisobutyrate terminated polydimethylsiloxane (PDMS). The polymerization occurred in controlled manner with the molecular weight found by 1H NMR close to that predicted and a narrow molecular weight distribution (Mw/Mn∼1.2). Copolymers were obtained with Mn=2100, 4900, 10 100 and 29 500 g mol−1 respectively with poly(MMA) (PMMA) terminal blocks and a central PDMS block of 5500 g mol−1 in each case.DSC analysis showed most of the poly(MMA-b-DMS-b-MMA) triblock copolymers exhibits two Tg’s, one at low temperature corresponding to the Tg of PDMS microphase and a second at high temperature corresponding to the Tg of the PMMA microphase. TEM images show microphase segregation morphology in bulk for the triblock copolymers, with a higher degree of segregation for copolymers containing higher PDMS content. XPS measurements were performed to determine the chemical composition at the surface. For all the copolymers PDMS enrichment is observed at the surface. Copolymers containing higher percentage of PDMS exhibit higher phase separation and better enrichment of PDMS at the surface. The surface tension determined by contact angle measurements of the copolymer film containing 59 mol% of PDMS was 19.15 mN m−1.  相似文献   

11.
Hydroxyl‐terminated poly(butadiene) (HTPB; Mn = 2100 g mol−1) was capped with 30 and 60 wt % of ɛ‐caprolactone to reach amphiphilic triblock copolymers in form of capped poly(butadiene) CPB. The former (CPB30; Mn = 3300 g/mol) is amorphous with a glass temperature of −56 °C. CPB60 (Mn = 4000 g mol−1) is semi‐crystalline with a melting point of 50 °C and a glass transition at −47 °C. The CPBs, HTPB and polycaprolactone diol (Mn = 2000 g mol−1) were used as soft segment components in the preparation of polyurethane elastomers (PUE), using a 1/1 mixture of an MDI prepolymer and uretonimine modified MDI, and hard phase components in form of 1,3‐propane diol, 1,4‐butane diol, and 1,5‐pentane diol. CPB‐based elastomers with 1,4 butane diol (8 wt %) show hard domains as fringed aggregates with a better connection to the continuous phase than the HTPB‐based PUE. The soft segment glass transition temperature (Tg) is at −28 °C for HTPB‐based PUE and at −43 °C for those of CPB. The tensile strength of the CPB30&60‐based PUE is found between 20 and 30 MPa at an elongation at break of 400% and 550%, respectively. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1162–1172  相似文献   

12.
The thermal conductivity λ and heat capacity per unit volume of poly(propylene glycol) PPG (0.4 and 4.0 kg·mol−1 in number-average molecular weight) have been measured in the temperature range 150–295 K at pressures up to 2 GPa using the transient hot-wire method. At 295 K and atmospheric pressure, λ = 0.147 W m−1K−1 for PPG (0.4 kg·mol−1) and λ = 0.151 W m−1K−1 for PPG (4.0 kg·mol−1). The temperature dependence of λ is less than 4 × 10−4 W m−1K−2 for both molecular weights. The bulk modulus has been measured in the temperature range 215–295 K up to 1.1 GPa. At atmospheric pressure, the room temperature bulk moduli are 1.97 GPa for PPG (0.4 kg·mol−1) and 1.75 GPa for PPG (4.0 kg·mol−1). These data were used to calculate the volume dependence of $ \lambda ,g\, = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T $. At room temperature and atmospheric pressure (liquid phase) we find g = 2.79 for PPG (0.4 kg·mol−1) and g = 2.15 for PPG (4.0 kg·mol−1). The volume dependence of g, (∂g/∂ log V)T varies between −19 to −10 for both molecular weights. Under isochoric conditions, g is nearly independent of temperature. The difference in g between the glassy state and liquid phase is small and just outside the inaccuracy of g of about 8%. The theoretical model for λ by Horrocks and McLaughlin yields an overestimate of g by up to 120%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 345–355, 1998  相似文献   

13.
The physical aging behavior, time‐dependent densification, of thin polystyrene (PS) films supported on silicon are investigated using ellipsometry for a large range of molecular weights (MWs) from Mw = 97 to 10,100 kg mol?1. We report an unexpected MW dependence to the physical aging rate of h < 80‐nm thick films not present in bulk films, where samples made from ultra‐high MWs ≥ 6500 kg mol?1 exhibit on average a 45% faster aging response at an aging temperature of 40 °C compared with equivalent films made from (merely) high MWs ≤ 3500 kg mol?1. This MW‐dependent difference in physical aging response indicates that the breadth of the gradient in dynamics originating from the free surface in these thin films is diminished for films of ultra‐high MW PS. In contrast, measures of the film‐average glass transition temperature T g(h) and effective average film density (molecular packing) show no corresponding change for the same range of film thicknesses, suggesting physical aging may be more sensitive to differences in dynamical gradients. These results contribute to growing literature reports signaling that chain connectivity and entropy play a subtle, but important role in how glassy dynamics are propagated from interfaces. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1224–1238  相似文献   

14.
Narrow molecular weight distribution samples of PVK have been prepared over the molecular weight (Mn) range of 3.7 × 103 to 2.7 × 106. No evidence of influence of the synthetic procedure on polymer tacticity has been observed. The glass-transition temperature Tg was linearly dependent on 1/Mn (Tg = 227°C) as predicted by the Fox-Flory chain-end free-volume model but no measurable change in free volume was detected. Crystallizability decreased with Mn and was zero in fractions below Mn = 46,000. This behavior coincides with that predicted by the nucleation theory outlined by Hoffman.21 This indicates that the chain-end free energy controls the stability of PVK folded-chain nuclei. The critical molecular weight for nucleation at 305°C was found to be some where in the range Mn = 1 ± 0.5 × 105. No change in the structure of the folded-chain lamellae with Mn was observed but evidence was obtained to support adjacent reentry of chains and a resulting localized crystal distortion.  相似文献   

15.
A new technique based on steady state fluorescence (SSF) measurements is introduced for studying dissolution of polymer films. These films are formed from naphthalene (N) and pyrene (P) labeled poly(methyl methacrylate) (PMMA) latex particles, sterically stabilized by polyisobutylene (PIB). Annealing was performed above Tg at elevated temperatures for 30 min time intervals for film formation. Film formation from these latexes is monitored by the extent of energy transfer from N to P using SSF and by the transmitted photon intensity from these films using UV visible (UVV) methods. Desorption of P labeled PMMA chains was monitored in real-time by the change of pyrene fluorescence intensity. Dissolution experiments were performed in various solvents with different solubility parameters, δ, at room temperature. Diffusion coefficients, D, in various solvents were measured and found to be around 10−10 cm2/s. Strong relationships between D and δ were observed. Diffusion activation energy was measured by performing dissolution experiments in toluene-heptane mixtures at elevated temperatures and determined to be 24.4 kcal mol−1.  相似文献   

16.
The synthesis of tailored [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (ChMA/Cl) and bis(trifluoromethanesulfonate) imide (ChMA/NTf2)-based ionic homopolymers by sustainable activators generated by electron transfer atom transfer radical polymerization (ATRP) method has been demonstrated. Linear and four-arm star-shaped macromolecules were obtained with the use of two synthetic strategies: (a) direct polymerization of ionic monomers with counterions differing in hydrophilicity (prepolymerization) and (2) modification by ion exchange from Cl to NTf2 (postpolymerization) using both classical ATRP initiator and pentaerythritol-based initiator. The effect of counterions on the polymerization kinetics and the physicochemical and thermodynamical properties of resulted poly(ionic liquid)s (PILs) has been investigated. Results showed that polymerizations of ChMA/NTf2 proceeded with higher rate in comparison to ChMA/Cl one independently on the predetermined topologies (linear and four-arm star-shaped). From thermodynamical point of view, the glass transition temperature Tg increased with molecular weight Mn for linear- and star-shaped PILs for both types of counterion. In addition, star-shaped polymers of comparable Mn to linear ones were characterized by slightly higher Tg values. The resulting polyelectrolytes, after modification via exchange of Cl anions to NTf2 ones were characterized by much higher Tg in comparison to those produced by direct polymerization of ionic monomer, indicating the crucial role of postpolymerization modification on thermodynamical properties of PILs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2681–2691  相似文献   

17.
Plant oil‐derived α,ω‐diacetals are polycondensated to the novel polyacetals [OCH2O(CH2)y]n (y = 19 and 23) with molecular weight of ca. M n = 2 × 104 g mol−1. The long methylene sequences provide substantial melt and crystallization temperatures (Tm = 88 °C and Tc = 68 °C for y = 23), and rates of hydrolytic degradation are dramatically lower for the long‐chain polyacetals versus a shorter chain analogue (y = 12) studied for comparison.  相似文献   

18.
Free-radical terpolymerizations of styrene, methyl methacrylate, and glycidyl methacrylate were carried out in a tubular reactor in the presence of 20 wt.% CO2 at temperatures between 120 and 180°C and pressures of 300 and 350 bar. The number average molecular weights, MN, were mostly between 2000 and 3000 g·mol−1 and polydispersity indices around 2. In part of the experiments molecular weights were controlled by n-dodecyl mercaptan serving as the chain-transfer agent. PREDICI modeling indicates that the targeted molecular weights of MN∼2500 g·mol−1 and polydispersities around 2 may also be reached by using an initiator cocktail, a mixture of two initiators with significantly different decomposition rate coefficients. The predictions are confirmed experimentally.  相似文献   

19.
In this work, we examine the strength of various types of individual hydrogen bond (HB) in mixed methanol-water MnWm, (n+m=2 to 7) clusters, with an aim to understand the relative order of their strength, using our recently proposed molecular tailoring-based approach (MTA). Among all the types of HB, it is observed that the OM−H…OW HBs are the strongest (6.9 to 12.4 kcal mol−1). The next ones are OM−H…OM HBs (6.5 to 11.6 kcal mol−1). The OW−H…OW (0.2 to 10.9 kcal mol−1) and OW−H…OM HBs (0.3 to 10.3 kcal mol−1) are the weakest ones. This energetic ordering of HBs is seen to be different from the respective HB energies in the dimer i. e., OM−H…OM (5.0 to 6.0 kcal mol−1)>OW−H…OM (1.5 to 6.0 kcal mol−1)>OM−H…OW (3.8 to 5.6 kcal mol−1)>OW−H…OW (1.2 to 5.0 kcal mol−1). The plausible reason for the difference in the HB energy ordering may be attributed to the increase or decrease in HB strengths due to the formation of cooperative or anti-cooperative HB networks. For instance, the cooperativity contribution towards the different types of HB follows: OM−H…OW (2.4 to 8.6 kcal mol−1)>OM−H…OM (1.3 to 6.3 kcal mol−1)>OW−H…OW (−1.0 to 6.5 kcal mol−1)>OW−H…OM (−1.2 to 5.3 kcal mol−1). This ordering of cooperativity contribution is similar to the HB energy ordering obtained by the MTA-based method. It is emphasized here that, the interplay between the cooperative and anti-cooperative contributions are indispensable for the correct energetic ordering of these HBs.  相似文献   

20.
Water‐soluble poly(ester‐carbonate) having pendent amino and carboxylic groups on the main‐chain carbon is reported for the first time. This article describes the melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) at a wide range of molar fractions. The influence of reaction conditions such as catalyst concentration, polymerization time, and temperature on the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the copolymers was investigated. The polymerizations were carried out in bulk at 110 °C with 3 wt % stannous octoate as a catalyst for 16 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, and gel permeation chromatography. The copolymers synthesized exhibited moderate molecular weights (Mn = 6000–14,700 g mol?1) with reasonable molecular weight distributions (Mw/Mn = 1.11–2.23). The values of the glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of cyclic carbonate. When the MBC content decreased from 76 to 12 mol %, the Tg increased from 16 to 48 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐MBC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐MBC)s was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. Debenzylation of 3 by catalytic hydrogenation led to the corresponding linear poly(ester‐carbonate), 4 , with pendent amino and carboxylic groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2303–2312, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号