首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, calcium carbonate was chemically treated with two kinds of dicarboxylic acids before compounding with polypropylene in the presence of dicumyl peroxide (DCP). It was observed that the mixture of dicarboxylic acids could improve the crystallization and impact strength properties of calcium carbonate/polypropylene composite. With further addition of DCP, more PP-g-MA was produced in the blend, resulting in PP composites with larger β-phase content and improved mechanical properties. In the experiments, the maximum K β value of 52.0 % was obtained. The elongation at break of composite increased from 252 % for PP composite with untreated calcium carbonate to 444 % for PP composite with chemically treated calcium carbonate.  相似文献   

2.
Lignocellulose nanofibers (LCNFs) were prepared by the wet-disk milling of wood flour and were subsequently used as a reinforcing filler for a polypropylene (PP) polymer matrix. The specific surface area and the smallest fiber width of the LCNFs were found to be 106 m2/g and 20 nm, respectively. Solid-state shear pulverization (SSSP) using a batch-type kneader was performed at a temperature lower than the PP melting point in order to improve the dispersion of the LCNFs in the PP matrix, which also contained 5 wt% maleic anhydride-grafted PP. The SSSP treatment improved LCNF dispersion; this was determined through optical and scanning electron microscopy observations. The improvement in LCNF dispersion after the SSSP treatment increased the Young’s moduli, yield strengths, and toughnesses of the resulting composites. The composites showed higher Young’s moduli and yield strengths that those of the neat PP matrix; this was true in the case of both the tensile and the bending tests. However, the impact strengths of the composites were not significantly different from that of the neat matrix. Finally, the crystallization rate of the PP matrix also increased with the increase in LCNF dispersion.  相似文献   

3.
The kinetics of nonisothermal melting and the crystallization of polypropylene (PP) in polypropylene/carbon‐fiber (C/PP) composites were studied by differential scanning calorimetry with the Nedkov and Atanasov method. Characteristic parameters such as the lamellar thickness, the transport energy through the phase boundary, and the surface free energy were determined and analyzed. In nonisothermal melting, the nucleation effect of carbon fibers was confirmed by decreasing transport energy (79 and 41 kJ/mol for PP and C/PP, respectively) and surface free energy (8 × 10?4 and 7.9 × 10?5 J/m2 for PP and C/PP, respectively). Depending on the carbon‐fiber content, the lamellar thickness changed from 6.7 × 10?9 m to 9.05 × 10?9 m. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 66–73, 2005  相似文献   

4.
王涛  郭海洋  胡泊洋  孟浩  侯彦辉 《化学通报》2017,80(11):1067-1072
为了制备聚丙烯/蒙脱土纳米复合材料,将Brookhart型的乙烯齐聚催化剂负载于有机蒙脱土片层间,进一步与丙烯聚合茂金属催化剂进行复配得到双功能催化体系。采用这种双功能催化剂体系通过催化乙烯齐聚得到α-烯烃/蒙脱土的齐聚产物,进一步将丙烯与这种齐聚产物共聚,合成了一系列结构不同的聚丙烯/蒙脱土纳米复合材料。通过气相色谱、X射线衍射(XRD)分析得出蒙脱土负载的铁系催化剂催化乙烯齐聚产物是以C_4~C_(16)为主的α-烯烃,蒙脱土以片层形式分散于齐聚产物的甲苯溶液中。研究了蒙脱土负载的铁系催化剂与共聚催化剂复配催化乙烯齐聚以及丙烯与齐聚产物共聚合的情况。通过XRD、透射电镜、差示量热分析、凝胶渗透色谱分析表征可知,蒙脱土以纳米片层剥离的形式均匀分散于聚丙烯基体中,聚丙烯/复合材料的结晶温度比纯聚丙烯有所下降,所得聚丙烯基体分子量在8.1×10~4~17.1×10~4g/mo L。  相似文献   

5.
Composite of highly crystalline fibrous cellulose (CE) and polypropylene (PP) of different molecular weights () was prepared via melting-mixing, maleic anhydride grafted polypropylene (MAPP) was used as a compatibilizer. And the effects of molecular weight of PP on the properties of the composites were investigated. Through the studying of mechanical properties, dynamic mechanical properties, melting and crystallization behaviors, thermo-oxidative properties, water absorption behaviors, and the morphology of the composites, it was found that PP with higher molecular weight revealed stronger interfacial interaction with cellulose in the composites. Compared with the lower molecular weight, the composites derived from higher molecular weight of PP exhibited stronger tensile strength at the same cellulose content.  相似文献   

6.
Polypropylene (PP) was modified with elastomer or CaCO3 particles of two different sizes (1 μm and 50 nm) in various volume fractions. The dispersion morphology and mechanical properties of the two systems were investigated as functions of the particle size and volume fraction of the modifier. The brittle‐to‐tough transition occurred when the matrix ligament thickness was less than the critical ligament thickness, which was about 0.1 μm for the PP used here, being independent of the type of modifier. At the same matrix ligament thickness, the improvement of the toughness was obviously higher with the elastomer rather than with CaCO3, but adding CaCO3 increased the modulus of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1656–1662, 2004  相似文献   

7.
Nucleating and transcrystallization behaviour of additives in engineering PP composites and the effect of modified interfacial structure is the subject of this series of papers. The first part concentrates on polypropylene/liquid crystalline polyester blends. Increased crystallisation temperature and degree of crystallinity of polypropylene is characteristic to the blends containing different amount of LCP additive. Transcrystallization process governs the formation of crystalline structure in these systems in course of isothermal crystallisation at 132C. The nucleating effect of LCP gives rise to more uniform crystalline structure in the polypropylene phase.The financial support of the OTKA 014194 is acknowledged with gratitude.  相似文献   

8.
Isocyanurate silane was adsorbed onto E-glass fibers from toluene and ethanol in order to gain a better understanding of the surface processes at the silane-glass interface of composite materials. Use of DRIFT (diffuse reflectance infrared Fourier transform spectroscopy), XPS (X-ray photoelectron spectroscopy), and TGA (thermogravimetric analysis) techniques allowed for the qualitative and quantitative determination of such surface processes. The degree of chemisorption of the silane to the glass surface was investigated by using a sequential washing procedure with solvents characterized by solubility parameters differing from each other. All the analyzing techniques indicated that coupling between the glass and the silane occurred. However, the structure of the silane film depends considerably on the solvent and on the subsequent washing procedure. Copyright 2000 Academic Press.  相似文献   

9.
Thermoanalytical study of nucleating effects in polypropylene composites   总被引:1,自引:0,他引:1  
Engineering application of polypropylene requires the employment of flame retardants. Reactive compounding of ammonium-polyphosphate and synergist additives with polypropylene is an effective way for forming flame retardant polypropylene. Both the ammonium-polyphosphate and the additives used for improving its performance effect the crystallization and melting behavior of polypropylene. Encapsulation of flame retardant additives with appropriate elastomer, in order to improve their water resistancy, causes further changes in degree of crystallinity and consequently in the mechanical properties.The financial support of the OTKA 014194 is acknowledged with gratitude.  相似文献   

10.
Cellulose - Oriented short hemp fibre mats were produced using dynamic sheet forming (DSF) incorporating cellulose nanocrystals (CNCs) to improve their integrity. The CNCs were found to act as a...  相似文献   

11.
Two different types of carbon nanofibers (CNF) were incorporated in the same polypropylene (PP) matrix by twin‐screw extrusion. The electrical characterization of both CNFs/PP composites as a function of volume fraction show different electrical performance: conducting and nonconducting. The objective of this work is to study the rheological behavior of both composites with the aim of relating it to the electrical behavior. The results indicate that the rheological behaviors are different, suggesting that rheology differentiates the microstructural variations responsible for the electrical performance. Furthermore, the main rheological parameters were correlated to the electrical conductivity. The results show that G′/G″ and G′ are the most sensitive parameters when compared with the onset of electrical percolation. Finally, in spite of the intrinsic measuring differences between electrical and rheological analysis, the two calculated thresholds are very similar: ~0.5 for the rheological and ~0.4 for the electrical. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

12.
Vermiculite clay (VMT) was organically modified with a quaternary organic salt and added to polypropylene (PP). The compounds were prepared by melt intercalation using a twin extruder. The morphology of the composites was investigated through wide-angle X-ray diffraction (WAXD). The WAXD results suggested that exfoliation phenomena were found for the composites with modified clay. The thermal properties of the obtained composites were studied by means differential scanning calorimetry (DSC) and thermogravimetry (TG) measurements. A variation in the crystallinity of PP was found. A significant increase of the thermal stability of PP was achieved in the presence of the modified VMT.  相似文献   

13.
This article is dedicated to the study of the thermal parameters of composite materials. A nonlinear least‐squares criterion is used on experimental transfer functions to identify the thermal conductivity and the diffusivity of aluminum‐polymer composite materials. The density measurements were achieved to deduce the specific heat and thereafter they were compared to values given by differential scanning calorimetry measurement. The thermal parameters of the composite material polypropylene/aluminum were investigated for the two different types of aluminum filler sizes. The experimental data were compared with several theoretical thermal conductivity prediction models. It was found that both the Agari and Bruggeman models provide a good estimation for thermal conductivity. The experimental values of both thermal conductivity and diffusivity have shown a better heat transport for the composite filled with large particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 722–732, 2004  相似文献   

14.
Polypropylene (PP) model composites were prepared using cross-linked PMMA particles with a very narrow particle size distribution as filler in order to study the micromechanical processes, which take place during deformation. Composites containing a commercial CaCO3 filler with a broad particle size distribution were also prepared and studied for comparison. The filler loading of the composites was changed from 0 to 0.3 volume fraction in 0.05 volume fraction steps. Measurements of acoustic emission signals during the elongation of PP/PMMA model composites allowed us to assign the debonding process, including its initiation, unambiguously to a well-defined section of the stress vs. strain curve. The number and intensity of the acoustic signals detected during the deformation of the matrix polymer and the composite, respectively, differed considerably, which made possible the separation of the various micromechanical deformation processes occurring in them. At low extensions the composite is deformed elastically, then debonding takes place in a very narrow deformation range, followed by the plastic deformation of the matrix. At small particle content debonding occurs at relatively low stresses, which differ significantly from the yield stress. Considerable plastic deformation of the matrix begins at the yield point. At larger filler content debonding and shear yielding occur simultaneously. Micromechanical deformation processes cannot be separated as clearly in composites prepared from the commercial CaCO3 filler with a broad particle size distribution. The debonding of particles with different size occurs in a wide deformation range because of the particle size dependence of debonding stress. The analysis of characteristic values derived from acoustic emission experiments proved that the interacting stress fields of neighboring particles influence the deformation process and that even large particles may aggregate or at least associate at large filler content.  相似文献   

15.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003  相似文献   

16.
17.
In this study, the comparisons of degradation behavior of polypropylene(PP) and PP/talc composites were carried out with one outdoor weathering test and three accelerated weathering (xenon, metal halide and carbon arc lamps) tests, respectively. The outdoor exposure vigorously advanced these degradations with the lowest amount of UV exposure energy. It was found that the degradation rates were affected by the visible light intensity in the light sources. In the case of the existence of talc compound, the degradation was synergistically accelerated by the exposures of the sunshine, the xenon and the metal halide lamps having higher visible light intensities. In addition, the degradations of the PP and the PP/talc composites were found to be synergistically accelerated by sunlight exposure and the acid rain, too.  相似文献   

18.
Kapok/cotton fabric has been used as reinforcement for conventional polypropylene and maleic anhydride grafted polypropylene resins. Treating the reinforcement with acetic anhydride and sodium hydroxide has modified the fabric (fibres). Thermal and mechanical properties of the composites were investigated. Results show that fibre modification gives a significant improvement to the thermal properties of the plant fibres, whereas tests on the mechanical properties of the composites showed poor tensile strength. Mercerisation and weathering were found to impart toughness to the materials, with acetylation showing slightly less rigidity compared to other treatments on either the fibre or composites. The modified polypropylene improved the tensile modulus and had the least toughness of the kapok/cotton reinforced composites. MAiPP reinforced with the plant fibres gave better flexural strength and the same flexural modulus at lower fibre content compared with glass fibre reinforced MAiPP.  相似文献   

19.
Polypropylene (PP)/octavinyl polyhedral oligomeric silsesquioxane (POSS) composites were prepared by two different processing methods: reactive blending and physical blending, and the crystallization behavior of PP and PP/POSS composites was studied by means of differential scanning calorimetry and polarized optical microscope. The results showed that the crystallization of PP in PP/POSS composites was strongly influenced by the different processing methods. POSS particles can act as effective nucleating agent, accelerating the crystallization of PP. The crystallization rate increased more dramatically for the reactive blending composite due to the stronger nucleating effect of PP grafted POSS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1762–1772, 2008  相似文献   

20.
Accelerated weathering of polypropylene/wood flour composites   总被引:3,自引:0,他引:3  
Wood-plastic composites (WPCs) have received increasing attention during the last decades, because of many advantages related to their use. Some of their main applications are represented by outdoor furnishing and decking; therefore, it is important to assess their behaviour under UV exposure. In this work, polypropylene/wood flour composites were prepared and their resistance to photooxidation investigated. The composites were prepared by extrusion and compression moulding, and were subjected to mechanical tests, FTIR analysis and molecular weight measurements. The results showed that the composites retained a higher fraction of the original mechanical properties after accelerated weathering; the wood flour did not significantly degrade throughout the irradiation time slot of the investigation and the composites kept a higher percentage of the original molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号