首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the selection of the polymer materials and polymer blends for various fields of applications the stability of material under constant deformation and constant load are very important. In this paper, the copolymers high-impact polystyrene, PS-HI, styrene-ethylene/buthylene-styrene block copolymer, SEBS, and their blends PS-HI/SEBS were investigated. The investigations were done by DMA analysis. The secondary viscoelastic functions, creep, creep modulus, stress and flexural relaxation modulus were investigated in creep and stress relaxation experiment at temperatures 25, 35, 45, 55 and 65°C during 1 h. The master curves were created by time-temperature correspondence principle, TTC. The correlation of the secondary viscoelastic functions with time, temperature and content of the hard, PS, phase was discussed.  相似文献   

2.
Abstract

For the selection of the polymer materials and polymer blends for various fields of applications, dynamic-mechanical properties, the primary viscoelastic functions as well as the stability of materials on different loads are very important. Since polymer materials are viscoelastic, their mechanical properties are dependent on temperature and time. The dynamic-mechanical properties of high-impact polystyrene, (PS-HI) and blends of PS-HI and styrene-butadiene-styrene block copolymer, (SBS) were investigated. Under the conditions of dynamic-mechanical load, the investigated systems will have different behavior due to the various content of the hard phase, polystyrene and soft phase, polybutadiene. The investigations were done by DMA analysis. The primary viscoelastic functions were determined. The influence of the constant stress on the strain and moduls at various temperatures was examined. The effects of the time on moduls changes was obtained by generating the master curves. The viscoelastic functions and the stability on the constant load, the changes of the moduls with time and temperature depend on the amount of polystyrene in the examined copolymers and blends. This investigation presents the possibility of predicting a useful lifetime of materials.  相似文献   

3.
The morphological and dynamic properties of epoxidized styrene–butadiene–styrene block copolymers were studied and compared with their parent styrene–butadiene–styrene block copolymer (SBS). Two peaks were observed in the mechanical loss (tan δ) curve which can be attributed to segmental motion of epoxidized polybutadiene (EPPB) and polystyrene. Analysis by DSC thermograms also showed the linear increase of glass transition temperature for EPPB domain with the epoxy group content. Phase separated structures of epoxidized SBS as observed by TEM suggests a considerable degree of mixing occurred between phases after 80 mol % of the double bonds in SBS were epoxidized. The interfacial region displays a third peak and causes much steeper drop in modulus at higher temperature than Tg of EPPB. Parallel dielectric relaxation measurements were also made in the frequency range of 30 Hz–1 KHz as a function of temperature. In each dielectric constant (?′) curve, there is a maximum near the Tg of EPPB determined from the dielectric loss tangent curve. The shift in Tg of EPPB versus epoxy group content was consistent with that measured by the thermal and dynamic mechanic analysis. These findings indicated an 8°C shift in glass transition temperature as the epoxy group content in EPPB increased 10%.  相似文献   

4.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization produced novel ABA triblock copolymers with associative urea sites within pendant groups in the external hard blocks. The ABA triblock copolymers served as models to study the influence of pendant hydrogen bonding on polymer physical properties and morphology. The triblock copolymers consisted of a soft central block of poly(di(ethylene glycol) methyl ether methacrylate) (polyDEGMEMA, 58 kg/mol) and hard copolymer external blocks of poly(2‐(3‐hexylureido)ethyl methacrylate‐co‐2‐(3‐phenylureido)ethyl methacrylate) (polyUrMA, 18‐116 kg/mol). Copolymerization of 2‐(3‐hexylureido)ethyl methacrylate (HUrMA) and 2‐(3‐phenylureido)ethyl methacrylate (PhUrMA) imparted tunable hard block Tg's from 69 to 134 °C. Tunable hard block Tg's afforded versatile thermomechanical properties for diverse applications. Dynamic mechanical analysis (DMA) of the triblock copolymers exhibited high modulus plateau regions (∼100 MPa) over a wide temperature range (−10 to 90 °C), which was indicative of microphase separation. Atomic force microscopy (AFM) confirmed surface microphase separation with various morphologies. Variable temperature FTIR (VT‐FTIR) revealed the presence of both monodentate and bidentate hydrogen bonding, and pendant hydrogen bonding remained as an ordered structure to higher than expected temperatures. This study presents a fundamental understanding of the influence of hydrogen bonding on polymer physical properties and reveals the response of pendant urea hydrogen bonding as a function of temperature as compared to main chain polyureas. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1844–1852  相似文献   

5.
Isotactic polypropylene (PP) was blended in extruder with 0–50% addition of styrene–ethylene/butylene–styrene (SEBS) and styrene–butadiene–styrene (SBS) block copolymers. Granulated blends were irradiated with electron beam (60 kGy) and 1 week later processed with injection molding machine. Properties of samples molded from irradiated and non-irradiated granulates were investigated using DSC, WAXS, MFR, SEM and mechanical and solubility tests. It was found that the SEBS based systems are more resistant to irradiation in comparison to similar blends with SBS copolymer. Such behavior can be explained by the presence of double bonds in elastic SBS block. Irradiation of PP-SBS blends leads to considerable structure changes of crystalline and amorphous PP phases and elastic SBS phase. It indicates creation of new (inter)phase consisting of products of grafting and cross-linking reactions. Irradiated PP-SBS blends show significant improvement of impact strength at low temperatures.  相似文献   

6.
Dynamic mechanical analysis (DMA) was used to explore the thermomechanical properties of dried polyelectrolytes and polyelectrolyte complexes (PECs) with different thermal and humidity histories. Although differences in the amount of water remaining in polyelectrolytes and PECs were small for ambient versus dessicator storage, the properties of polyelectrolyte‐based materials were drastically different for different humidity histories. Glass transition temperatures (Tgs) of poly(diallyldimethylammonium chloride) (PDADMAC) were shown to vary by 100 °C, depending on humidity and thermal histories. These parameters also change glassy storage modulus values by 100%. Furthermore, we observe that dried PDADMAC is highly lossy. DMA of dried poly(styrene sulfonate) (PSS) was more complex and did not exhibit a glass transition in the tested range. DMA of a PEC of PDADMAC and PSS revealed a humidity history‐dependent water melt in the first heating cycle, as well as storage modulus values of dried and annealed PECs that only varied by 17–26% over a 275 °C temperature range. Based on these results, we report for the first time humidity history as controlling structure and properties of polyelectrolyte‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 684–691  相似文献   

7.
This study investigated the dynamic mechanical properties of hybrid intraply carbon/E-glass epoxy composites with different orientations and stacking sequences under different loading conditions with increasing temperature. A neat epoxy and five various hybrid composites such as Carbon (0°)/E-glass (90°), Carbon (45°)/E-glass (135°), Carbon (90°)/E-glass (0°), Carbon/E-glass (alternating layer), and Carbon/E-glass (alternating layer 45°) were manufactured. Three-point bending test and dynamic mechanical test were conducted to understand the flexural modulus and viscoelastic behavior (storage modulus, loss modulus, and loss tangent) of the composites. Dynamic mechanical test was performed with the dual cantilever method, at four different frequencies (1, 5, 10, and 20 Hz) and temperatures ranging from 30 to 150°C. The experimental results of storage modulus, loss modulus, and loss tangents were compared with the theoretical findings of neat epoxy and various hybrid composites. The glass transition temperature (Tg) increased with the increase in frequency. A linear fit of the natural log of frequency to the inverse of absolute temperature was plotted in the activation energy estimation. The interphase damping (tanδi) between plies and the strength indicator (Si) of the hybrid composites were estimated. It was observed that the neat epoxy had more insufficient storage and loss modulus and a high loss tangent at all the frequencies whereas hybrid composites had high storage and loss modulus and a low loss tangent for all the frequencies. Compared with other hybrid composites, Carbon (90°)/E-glass (0°) had higher strength and activation energy. The result of reinforcement of hybrid fiber in neat epoxy significantly increases the material's strength and stability at higher temperatures whereas decreasing free molecular movement.  相似文献   

8.
Differential scanning calorimetry (DSC) does not allow for easy determination of the glass‐transition temperature (Tg) of the polystyrene (PS) block in styrene–butadiene–styrene (SBS) block copolymers. Modulated DSC (MDSC), which deconvolutes the standard DSC signal into reversing and nonreversing signals, was used to determine the (Tg) of both the polybutadiene (PB) and PS blocks in SBS. The Tg of the PB block was sharp, at ?92 °C, but that for the PS blocks was extremely broad, from ?60 to 125 °C with a maximum at 68 °C because of blending with PB. PS blocks were found only to exist in a mixed PS–PB phase. This concurred with the results from dynamic mechanical analysis. Annealing did not allow for a segregation of the PS blocks into a pure phase, but allowed for the segregation of the mixed phase into two mixed phases, one that was PB‐rich and the other that was PS‐rich. It is concluded that three phases coexist in SBS: PB, PB‐rich, and PS‐rich phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 276–279, 2005  相似文献   

9.
A random copolymer (RCP) containing poly(ether ether ketone) (PEEK) and thermotropic liquid crystalline polymer (TLCP) segments was synthesized. Its chemical structure and liquid crystalline properties were characterized by FT‐IR, differential scanning calorimetry (DSC) and polar light microscopy (PLM) respectively. A single glass transition temperature (Tg) at 134.0°C, a melting temperature (Tm) at 282.0°C and a temperature of ignition (Ti) at 331.3°C can be observed. Blends of PEEK and TLCP with and without RCP as compatibilizer were prepared by extrusion and the effect of RCP on the thermal properties, dynamic mechanical properties, morphology and static tensile mechanical properties of blends was investigated by means of DSC, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), etc. Dynamic mechanical measurements indicated that there appeared to be only a single tan δ peak resulting from the glass transition of the PEEK‐rich phase and the Tg value shifted towards higher temperature due to the presence of compatibilizer, as suggested partial compatibility. Morphological investigations showed that the addition of RCP to binary blends reduced the dispersed phase size and improved the interfacial adhesion between the two phases. The ternary compatibilized blends showed enhanced tensile modulus compared to their binary blends without RCP. The strain at break decreased for the ternary blends due to embrittlement of the matrix by the incorporation of some RCP to the matrix phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The melt rheological behavior of an anionically polymerized styrene–butadiene–styrene (SBS) block copolymer sample (S: 7 × 103 and B: 43 × 103) was studied using a Weissenberg rheogoniometer. Highly non-Newtonian behavior, high viscosity and high elasticity, which are characteristics of ABA type block copolymers, were observed at 125°C, 140°C, and 150°C. The data at these temperatures superimposed well onto a master curve giving a constant flow activation energy. However, the data at 175°C indicated a marked change in the flow mechanism between 150°C and 175°C. At 175°C, the sample showed Newtonian behavior, negligible elasticity, and deviation from the master curve. These findings may be considered as an indication that the SBS block copolymer sample undergoes a structural change from a multiphase structure at low temperatures into a homogeneous structure at some temperature between 150°C and 175°C.  相似文献   

11.
MSBSM five-block copolymers where B stands for butadiene, S for styrene, and M for either methyl methacrylate (MMA) or tert-butyl methacrylate (tBMA) have been synthesized by sequential anionic polymerization in an apolar solvent by using a difunctional anionic initiator derived from 1,3-diisopropenylbenzene. These block copolymers show improved mechanical properties and an extended service temperature compared to traditional SBS thermoplastic elastomers. Upon hydrolysis and further neutralization of the PolytBMA end-blocks, the upper glass transition temperature (Tg) of the five-block copolymers has been raised up to about 150°C. A further increase in this service temperature (up to ca. 160°C) has resulted from the blending of sPMMA-SBS-sPMMA five-block copolymers with isotactic poly(methacrylate) (iPMMA), due to the formation of a stereocomplex. The tensile properties of these modified five-block copolymers have remained essentially unchanged. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Dicyclopentadiene (DCPD) and 5‐ethylidene‐2‐norbornene (ENB) and their mixtures were analyzed after ring‐opening metathesis polymerization (ROMP) in the presence of Grubbs catalyst as potential candidate healing agents for self‐healing composite materials using two complementary methods, rotational dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Following isothermal DMA measurements at room temperature (RT = 25 °C) for 120 min, two consecutive dynamic temperature scan experiments were performed for each system. In the first dynamic temperature scans, there was an initial downward peak slightly above RT in the storage modulus versus temperature curve for samples with relatively slower reaction rates (i.e., DCPD and DCPD‐rich mixtures or low catalyst loadings) due to a combination of the glass transition followed by further residual reaction. However, no or negligible downward peaks were observed for the highly reactive ENB and ENB‐rich samples even at much lower catalyst loadings. Implications of the substantial decrease in storage modulus just above RT for the slowly reacting systems are discussed for healing of damage in composite materials at elevated temperatures. The maximum glass transition temperatures (Tg∞) from DMA of the fully cured samples were determined to be approximately 160 °C for DCPD and 120 °C for ENB, decreasing linearly with increased ENB in the blends. The glass transitions and further residual reactions above the glass transitions were confirmed by DSC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1771–1780, 2007  相似文献   

13.
The miscibility of blends of isotactic polypropylene and propylene-1-hexene (PH) copolymers with 11 and 21 mol% of 1-hexene (PH11 and PH21, respectively) has been studied theoretically and using DSC, DMA, and AFM techniques. Using experimental PVT data, the solubility parameter approach leads to a critical difference in 1-hexene content for melt miscibility of 17 mass% (~11 mol%) at 200 °C and 0.1 MPa. The theoretical window for miscibility is in close agreement with thermal properties of the blends. The glass transition (T g) of miscible blends (iPP/PH11 and PH11/PH21) decreases proportionally to the content of PH having the lowest T g, while immiscible blends (iPP/PH21) display invariable T g with blend composition. The same trend was extracted from the analysis of the β-relaxation by dynamic mechanical analysis. Room temperature AFM images of blends quenched from 200 °C into liquid nitrogen confirm phase segregation of iPP/PH21 in domains of 1–5 microns, while the AFM images of iPP/PH11 and PH11/PH21 lack any obvious signature of phase separation prior to crystallization.  相似文献   

14.
采用磨盘形力化学反应器,在室温下制备了PA6/PP超细混合粉体,与SBS共混制得PA6/PP/SBS共混物,测定了材料的力学性能并用TEM研究了材料在不同加工温度下相结构的变化.结果表明,通过固相力化学粉碎制备的PA6/PP混合微粉,改善了PA6与PP和SBS的相容性,促进了PA6及PP的分散和与SBS的相界面结合.在微粉填充量为4%~8%(质量分数)时,材料的拉伸强度大幅度提高,扯断伸长率保持不变.加工温度变化引起材料相结构的变化对材料性能产生显著影响.在PP熔融温度下加工,PP粒子产生粘连形成链状结构,可提高材料的力学性能.  相似文献   

15.
The viscoelastic behavior of amorphous ethylene–styrene interpolymers (ESIs) was studied in the glass transition region. The creep behavior at temperatures from 15°C below the glass transition temperature (Tg) to Tg was determined for three amorphous ESIs. These three copolymers with 62, 69, and 72 wt % styrene had glass transition temperatures of 11, 23, and 33°C, respectively, as determined by DMTA at 1 Hz. Time–temperature superposition master curves were constructed from creep curves for each polymer. The temperature dependence of the shift factors was well described by the WLF equation. Using the Tg determined by DMTA at 1 Hz as a reference temperature, C1 and C2 constants for the Williams, Landel, and Ferry (WLF) equation were calculated as approximately 7 and 40 K, respectively. The master curves were used to obtain the retardation time spectrum and the plateau compliance. The entanglement molecular weight obtained from the plateau compliance increased with increasing styrene content as 1,600, 1,870, and 2,040, respectively. The entanglement molecular weight of the ESIs was much closer to that of polyethylene (1,390) than to that of polystyrene (18,700); this was attributed to the unique chain microstructure of these ESIs with no styrene–styrene dyads. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2373–2382, 1999  相似文献   

16.
Acoustically transparent elastomers are the windows through which the United States Navy views the ocean. For acoustic clarity and sensitivity, it is important that the elastomer operates well outside damping conditions as dictated by the temperatures and frequencies of interest. Damping behavior is characterized by a peak in the loss tangent. However, the temperature and frequency location of this peak can shift in response to absorbed plasticizing fluids. This material characteristic is under investigation using dynamic mechanical analysis (DMA) to assess its dependence on the plasticizer and polyurethane component chemistry. In this first stage of the research, a temperature range from ?100 to 100 °C and samples saturated with fluid were explored by DMA to determine the limiting behavior of the samples, enabling more detailed investigation in future work. Association of absorbed plasticizers with polyurethane components by polarity was demonstrated in the results by the shifting of the appropriate hard and soft block loss tangent peak.  相似文献   

17.
The mechanical properties of linear and V‐shaped compositional gradient copolymer of styrene and n‐butyl acrylate with composition of around 55 wt % styrene were investigated by comparing with their block copolymer counterparts. Compared with their block copolymer counterparts, the gradient copolymers showed lower elastic modulus, much larger elongation at break, and similar ultimate tensile strength at room temperature. This performance could be ascribed to that the local moduli continuously change from the hardest nanodomains to the softest nanodomains in the gradient copolymer, which alleviates the stress concentration during tensile test. Compared with the V‐shaped gradient (VG) copolymer, the linear gradient copolymer showed much higher elastic modulus but lower elongation at break. The mechanical properties of the gradient copolymers were more sensitive to the change in temperature from 9 °C to 75 °C. With recovery temperature increased from 10 °C to 60 °C, the strain recovery of VG copolymer would change steadily from 40% to 99%. However, the elastic recovery of linear and triblock copolymer was poor even at 60 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 860–868  相似文献   

18.
The physical aging behavior of an isotropic amorphous polyimide possessing a glass transition temperature of approximately 239°C was investigated for aging temperatures ranging from 174 to 224°C. Enthalpy recovery was evaluated as a function of aging time following sub‐Tg annealing in order to assess enthalpy relaxation rates, and time‐aging time superposition was employed in order to quantify mechanical aging rates from creep compliance measurements. With the exception of aging rates obtained for aging temperatures close to Tg, the enthalpy relaxation rates exhibited a significant decline with decreasing aging temperature while the creep compliance aging rates remained relatively unchanged with respect to aging temperature. Evidence suggests distinctly different relaxation time responses for enthalpy relaxation and mechanical creep changes during aging. The frequency dependence of dynamic mechanical response was probed as a function of time during isothermal aging, and failure of time‐aging time superposition was evident from the resulting data. Compared to the creep compliance testing, the dynamic mechanical analysis probed the shorter time portion of the relaxation response which involved the additional contribution of a secondary relaxation, thus leading to failure of superposition. Room temperature stress‐strain behavior was also monitored after aging at 204°C, with the result that no discernible embrittlement due to physical aging was detected despite aging‐induced increases in yield stress and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1931–1946, 1999  相似文献   

19.
The effects of thermal annealing on the viscoelastic properties and morphology of films prepared from bimodal latex blends containing equal weight fractions of soft and hard latex particles with controlled sizes were investigated. The thermal and viscoelastic properties of as‐dried and annealed samples were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). Throughout the thermal annealing, the latex blend morphologies were also followed with atomic force microscopy and transmission electron microscopy (TEM). A particulate morphology, consisting of hard particles evenly dispersed in a continuous soft phase, was observed in the TEM micrographs of the as‐dried latex blends and resulted in an enhancement of the mechanical film properties at temperatures between the α relaxations of the soft and hard phases in the DMA thermograms. As soon as the thermal annealing involved temperatures higher than the glass‐transition temperature of the hard phase, the hard particles progressively lost their initial spherical shape and formed a more or less continuous phase in the latex blends. This induced coalescence of the hard particles was confirmed by the association of the experimental viscoelastic data with theoretical predictions, based on self‐consistent mechanical models, which were performed by the consideration of either a particulate or cocontinuous morphology for the bimodal latex blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2289–2306, 2005  相似文献   

20.
We report the thermal, optical, and mechanical properties of random copolymers produced by radical copolymerizations of diisopropyl fumarate (DiPF) with 1‐adamantyl acrylate (AdA) and bornyl acrylate (BoA). The effects of a methylene spacer included in the main chain and bulky ester alkyl groups in the side chain on the copolymer properties are discussed. The produced copolymers are characterized by NMR and UV–vis spectroscopies, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis (DMA). The copolymerization rate and the molecular weight of the copolymers increase with an increase in the acrylate content in feed during the copolymerization (Mw = 25–110 × 103). The onset temperature of decomposition (Td5) and the glass transition temperature (Tg) of the copolymers also increase according to the content of the acrylate units (Td5 = 296–329 °C and 281–322 °C, Tg = 80–133 °C and 91–106 °C for the copolymers of DiPF with AdA and BoA, respectively). Transparent and flexible copolymer films are obtained by a casting method and their optical properties such as transparency and refractive indices are investigated (nD = 1.478–1.479). The viscoelastic data of the copolymers are collected by DMA measurements under temperature control. The storage modulus decreases at a temperature region over the Tg value of the copolymers, depending on the structure and amount of the acrylate units. The sequence structure of the copolymers is analyzed based on monomer reactivity ratios and composition in order to discuss the copolymer properties related to chain rigidity and sequence length distribution. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 288–296  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号