首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
By using supercritical carbon dioxide (sc‐CO2) as the physical foaming agent, microcellular foaming was carried out in a batch process from a wide range of immiscible polypropylene/polystyrene (PP/PS) blends with 10–70 wt% PS. The blends were prepared via melt processing in a twin‐screw extruder. The cell structure, cell size, and cell density of foamed PP/PS blends were investigated and explained by combining the blend phase morphology and morphological parameters with the foaming principle. It was demonstrated that all PP/PS blends exhibit much dramatically improved foamability than the PP, and significantly decreased cell size and obviously increased cell density than the PS. Moreover, the cell structure can be tunable via changing the blend composition. Foamed PP/PS blends with up to 30 wt% PS exhibit a closed‐cell structure. Among them, foamed PP/PS 90:10 and 80:20 blends have very small mean cell diameter (0.4 and 0.7 µm) and high cell density (8.3 × 1011 and 6.4 × 1011 cells/cm3). Both of blends exhibit nonuniform cell structure, in which most of small cells spread as “a string of beads.” Foamed PP/PS 70:30 blend shows the most uniform cell structure. Increase in the PS content to 50 wt% and especially 70 wt% transforms it to an irregular open‐cell structure. The cell structure of foamed PP/PS blends is strongly related to the blend phase morphology and the solubility of CO2 in PP more than that in PS, which makes the PP serve as a CO2 reservoir. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Time dependence of the gel formation in toluene solutions of polycarbonate (PC) was investigated by two-dimensional Fourier-transform infrared (2D FT-IR) correlation spectroscopy. The 2D correlation approach reveals that there are at least three bands in the C=O stretching region. The intensity increase of the band at 1771 cm−1 occurs later compared with the onset of the intensity changes of the bands at 1778 and 1765 cm−1 corresponding to amorphous and crystalline-like domains, respectively. The band at 1771 cm−1 is assigned to the chain conformations occurring in the partial-order regions accompanying crystalline-like domains. Splitting of the signals of aromatic carbons in the solid-state 13C CP/MAS NMR spectra of semicrystalline PC and PC-PEO blends indicates restricted mobility resulting from the fixed ordering due to partial crystallinity of PC itself and from blending of PC with PEO. The decreasing mobility of PC with the increasing content of highly mobile PEO in the blends was proved by the dipolar dephasing rates obtained in the 1H-1H CRAMPS (combined rotation and multi-pulse spectroscopy) NMR experiments.  相似文献   

3.
The differential orientation of polymer chains has been measured in polystyrene (PS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) compatible blends. Density measurements are reported as a function of binary blend composition at 23°C. Drawing was performed by solid-state coextrusion. PS/PPO blend compositions of 90/10 and 75/25 were drawn within sandwiches of polyethylene at 145°C and isotactic polypropylene at 155°C, i.e. at ca. 25°C above the glass transition temperatures of the two blends. The change in Fourier-transform infrared dichroisms on drawing these blends was measured at 906 and 1190 cm?1, corresponding to predominantly PS and PPO, respectively. The orientation of PS and PPO was observed as a function of draw ratio λ in the range 1–5; orientations increased with λ for both PS and PPO in both blends but to different degrees. Both polymers decreased in orientation with increasing PPO content. Annealing with fixed ends showed that the PPO chains disorient more slowly than those of PS. All binary systems were found to be amorphous and compatible.  相似文献   

4.
In-situ polymer blends of polystyrene (PS)/poly(methyl methacrylate) (PMMA) with controlled and variable different compositions and molecular weights were found to be successfully synthesized by “chain transfer living polymerization (CTLP)” methodology by a combination of size-exclusion chromatographic analysis, differential scanning calorimetry (DSC), UV/Vis and H NMR spectroscopy, and optical microscopic analysis. The PMMAs prepared in tetrahydrofuran (THF) in the presence of polystyrene exhibit highly syndiotactic stereoregularity (over 70 mol-%) and a glass transition temperature over 120°C. A dispersed morphology was found even for blends with over 31 vol.-% of the weight fraction of one component due to the discrepancy in the molecular weights of two components in the PS/PMMA blends. A ternary polymer blend system having PS/PMMA/PS -block- PMMA can be generated by control of the concentration of fluorene as the chain transfer agent in the CTLP.  相似文献   

5.
Conducting poly(o-toluidine) (POT) and poly(m-toluidine) (PMT) blends containing 10, 30, 50, 70, and 90 % wt/wt of polystyrene (PSt) were prepared by employing a two-step emulsion pathway. The bands characteristic of both polystyrene and POT/PMT are present in the IR spectra of POT–PSt and PMT–PSt blends. The UV-visible spectra of POT–PSt and PMT–PSt blends exhibit two bands around 313 and 610 nm, confirming that some amount of POT/PMT base is present in the blends. The EPR parameters such as line width and spin concentration reveal the presence of POT/PMT salt in the respective blends. The TGA, DTA, and DSC results suggest a higher thermal stability for the POT and PMT blends than that for the respective salts. The conductivity values of POT(70)–PSt(30) and POT(90)–PSt(10) blends are almost the same (1.1 × 10−2 and 1.3 × 10−2 S cm−1, respectively) and these values are very close to that of pure POT salt, suggesting that POT can be blended with up to 30% wt/wt of PSt to improve its mechanical properties without a significant drop in its conductivity. The conductivity values of PMT–PSt blends are lower than those of the corresponding POT–PSt blends by two to three orders of magnitude, indicating that POT is a better system than PMT to prepare blends by this method. The dielectric constant and tan δ values of the blends increase with the amount POT/PMT and are greater than that of polystyrene. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2291–2299, 1998  相似文献   

6.
Fourier-transform infrared spectral studies of an amorphous linear aromatic polyurethane at various temperatures were performed. Hydrogen bonding was studied in the N? H stretching (3347 cm?1) and the bending (1535 cm?1) regions, using the band decomposition technique. The variations with temperature are used to calculate the ratio of the absorptivity coefficients for the H-bonded to the “free” N? H vibrations. This ratio is found to be independent of temperature. The enthalpy and the entropy of hydrogen bond dissociation are also obtained as 9.6 kJ mol?1 and 44.8 J mol?1 K?1, respectively. Two C?C in-plane vibrational bands of the aromatic rings at 1614 and 1598 cm?1 were studied at different temperatures. The integrated absorbance for both bands decreases clearly and regularly with increasing temperature, and both bands shift to lower wavenumbers. This strongly suggests a specific interaction for the aromatic rings, probably N? H … π hydrogen bonds, which will be discussed in detail in the second part of this series. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
《European Polymer Journal》1986,22(6):487-490
The thermal analysis characteristics of ternary blends polystyrene(PS)/polycarbonate(PC)/tetramethylpolycarbonate (MPC) show that the PS forms mostly a pure PS phase, whereas the PC and MPC go into a second phase very close to a binary blend of the same PC/MPC weight composition. However, an additional broad glass transition is observed for most blends within the same temperature range (129–133°). On the other hand, the viscoelastic properties of the ternary blends containing 75% PC/MPC weight fraction exhibit an additional low frequency (large relaxation times) relaxation domain. This relaxation domain might be attributed either to a PS/MPC interphase or to PS “trapped” at the PS-PC/MPC interphase.  相似文献   

8.
This paper proposes an analytical method to detect adulteration of diesel/biodiesel blends based on near infrared (NIR) spectrometry and supervised pattern recognition methods. For this purpose, partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) coupled with the successive projections algorithm (SPA) have been employed to build screening models using three different optical paths and the following spectra ranges: 1.0 mm (8814-3799 cm−1), 10 mm (11,329-5944 cm−1 and 5531-4490 cm−1) and 20 mm (11,688-5952 cm−1 and 5381-4679 cm−1). The method is validated in a case study involving the classification of 140 diesel/biodiesel blend samples, which were divided into four different classes, namely: diesel free of biodiesel and raw vegetal oil (D), blends containing diesel, biodiesel and raw oils (OBD), blends of diesel and raw oils (OD), and blends containing a fraction of 5% (v/v) of biodiesel in diesel (B5). LDA-SPA models were found to be the best method to classify the spectral data obtained with optical paths of 1.0 and 20 mm. Otherwise, PLS-DA shows the best results for classification of 10 mm cell data, which achieved a correct prediction rate of 100% in the test set.  相似文献   

9.
Miscibility phase behavior in blends of poly(bromostyrene) with polystyrene (PS) has been investigated by means of time‐resolved light scattering, optical microscopy, and DSC. Cloud point phase diagrams of blends of conventional PS with poly‐(2‐bromostyrene) (P2BrS), poly‐(3‐bromostyrene), and poly‐(4‐bromostyrene) of comparable molecular weights were established by light scattering. Of particular interest is the fact that ortho, meta, and para substitutions in the styrenic aromatic rings of poly(bromostyrene) show profound effects on the composition–temperature phase diagrams of their blends with PS, exhibiting a lower critical‐solution temperature (LCST), an upper critical solution temperature (UCST), and combined LCST/UCST diagrams, respectively. Poly‐(2‐chlorostyrene) exhibits an LCST behavior very close to that of the P2BrS blend, suggesting that these types of halogen atoms may be inconsequential to phase behavior. A similar study has been extended to a PS blend containing commercial brominated PS (66 mol % bromine substitution) to determine what location of bromine substitution is crucial for miscibility enhancement in the flame‐retardant brominated PS blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1605–1615, 2001  相似文献   

10.
The cure and the final network of epoxy resins have been investigated by numerous techniques, nevertheless a clear understanding of this network structure has not yet been achieved. FTIR analysis of polymeric materials provides highly precise measurements that are widely interpretable in terms of chemical structure. Yet the high absorption of fundamental bands requires careful sample preparation to reduce the thickness of the sample or special reflection techniques are needed. Furthermore, the occurrence of overlapping bands for epoxy resin (N-H and O-H vibrations in the 3000 cm−1 region) renders the quantitative analysis in the region mid IR particularly difficult. However, the overtone and combination bands are 10–100 times weaker than the fundamental ones and are observed in near infrared (NIR) region. Longer pathlengths than Mid IR ones can be used allowing transmission analysis of thick samples (1-20 mm) without special preparation. NIR absorption bands have different intensities depending on the anharmonicity of vibrations. The strongest absorption bands are due to protons connected to carbon, nitrogen, oxygen. Hydrogen bonding due to inter- and intramolecular interactions can cause band broadening, peak position shifts and intensity variations. NIR spectroscopy is therefore a useful technique to investigate polymeric materials and was used to study the cure reactions of various epoxy resins cured with amine hardener. Using different NIR techniques (reflectance, transmission and microscopy) we will briefly present some results concerning hydrogen bonding between epoxy and amine hardener before curing, epoxy resins, glass/epoxy composites and epoxy/PES (polyethersulfone) blends.  相似文献   

11.
The objective of this paper was to apply two‐dimensional (2D) near‐infrared (NIR) correlation spectroscopy to the discrimination of three species of Dendrobium. Generalized 2D‐NIR correlation spectroscopy was able to enhance spectral resolution, simplify the spectrum with overlapped bands and provide information about temperature‐induced spectral intensity variations that was hard to obtain from one‐dimensional NIR spectroscopy. The FT‐NIR spectra were measured over a temperature range of 30–140°C. The 2D synchronous and asynchronous spectra showed remarkable differences within the range of 5600–4750 cm−1 between different species of Dendrobium. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A new series of high-performance fluorophores named Keio Fluors (KFL), which are based on borondipyrromethene (BODIPY), are reported. The KFL dyes cover a wide spectral range from the yellow (547 nm) to the near-infrared (NIR, 738 nm) region, and their emission wavelength could be easily and subtly controlled based on simple molecular modifications only, without losing their optical properties. This “tailor-made” synthetic strategy for tuning the emission wavelength enabled the creation of fourteen KFL dyes with well-controlled emission colors (yellow, orange, red, far-red, and NIR). Moreover, these KFL dyes also retain their excellent optical properties, such as spectral bands sharper than quantum dots, high extinction coefficients (140 000–316 000 M −1 cm−1), and high quantum yields (0.56–0.98), without any critical solvent polarity dependent decrease of their brightness. These advantageous characteristics make the KFL dyes potentially useful as new candidates of fluorescent standard dyes to substitute or to complement existing long-wavelength fluorescent dyes, such as cyanines, oxazines, rhodamines, or other BODIPY dyes.  相似文献   

13.
This work evaluates the use of near-infrared (NIR) overtone regions to determine biodiesel content, as well potential adulteration with vegetable oil, in diesel/biodiesel blends. For this purpose, NIR spectra (12,000–6300 cm−1) were obtained using three different optical path lengths: 10 mm, 20 mm and 50 mm. Two strategies of regression with variable selection were evaluated: partial least squares (PLS) with significant regression coefficients selected by Jack-Knife algorithm (PLS/JK) and multiple linear regression (MLR) with wavenumber selection by successive projections algorithm (MLR/SPA). For comparison, the results obtained by using PLS full-spectrum models are also presented. In addition, the performance of models using NIR (1.0 mm optical path length, 9000–4000 cm−1) and MIR (UATR – universal attenuated total reflectance, 4000–650 cm−1) spectral regions was also investigated. The results demonstrated the potential of overtone regions with MLR/SPA regression strategy to determine biodiesel content in diesel/biodiesel blends, considering the possible presence of raw oil as a contaminant. This strategy is simple, fast and uses a fewer number of spectral variables. Considering this, the overtone regions can be useful to develop low cost instruments for quality control of diesel/biodiesel blends, considering the lower cost of optical components for this spectral region.  相似文献   

14.
The linear viscoelastic properties of polystyrene polyethylene (PS/PE) blends have been investigated in the molten state. For concentrations of the dispersed phase equal to 30 vol %, the blends exhibited a droplet‐matrix morphology with a volume‐average diameter of 5.5 μm for a 70/30 PS/PE blend at 200 °C and 14.7 μm for a 30/70 PS/PE blend at 230 °C. Enhanced elasticity (G′) for both blends, in the terminal zone, compared to the modulus of the matrix (PS and PE, respectively) was observed. This is related to the deformation of the droplets in the matrix phase and hence to the interfacial forces between the blend components. The results for these uncompatibilized blends are shown to be in agreement with the predictions of the emulsion model of Palierne. These predictions were used to obtain the interfacial tension between PS and PE, which was found to be between 2 and 5 mN/m at 200 °C and 4 ± 1 mN/m at 230 °C. Independent interfacial tension measurements using the breaking‐thread method resulted in a value of 4.7 mN/m and 4.1 mN/m at 200 °C and 230 °C for the respective blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1359–1368, 2000  相似文献   

15.
This paper is part of a comprehensive study on using selective localization of carbon black (CB) at the interface of immiscible polymer blends in order to reduce the percolation threshold concentration and enhance the conductivity of the blends. CB was successfully localized at the interface of polypropylene/polystyrene (PP/PS) blend by introducing styrene-butadiene-styrene (SBS) tri-block copolymer to the blend. In CB-PP/PS/SBS blends, CB has higher affinity for the polybutadiene (PBD) section of the SBS copolymer, whereas in CB-PP/PS blends, CB prefers the PS phase. PP/PS interface is one of the preferred locations for the SBS copolymer in the (PP/PS) blend; at which the PBD section of the SBS copolymer forms a few nanometers thick layer able to accommodate the CB nano-particles. The influence of SBS addition on the morphology and electrical properties of various PP/PS blends filled with 1 vol% CB were studied. SBS influence on the conductivity of PP/PS blends was found to be a function of the PP/PS volume ratio and SBS loading. The most dramatic increase in conductivity was found in the (60/40) and (70/30) PP/PS blends upon the addition of 5 vol% SBS. 5 vol% SBS was found to be the optimum loading for most blends. Using 10 vol% of SBS was reported to deteriorate electrical conductivity of the conductive co-continuous PP/PS blends. For all blends studied, SBS addition was found to compatibilize the blends. Finer morphologies were obtained by increasing SBS loading.  相似文献   

16.
Due to the establishment of common thermoplastics such as polyethylene, polypropylene and polytetrafluoroethylene as substrates for modern electrets, research in this field has seen significant progress in recent decades. However, there still is a need for new substrate materials in order to boost modern-day electret applications. Important targets for a further development are electret substrates with a tailored balance between cost and performance especially at elevated temperatures. In this study, experimental results concerning the charge storage behaviour of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) films and its blends with polystyrene (PS) are presented. As demonstrated, the good electret performance of neat PPE can be further enhanced by the addition of suitable weight fractions of PS, a synergistic electret behaviour that is related to morphological blend parameters such as the packaging density and the presence of PS micro-heterogeneities in the PPE/PS matrix. Most importantly, the results highlighted in this study clearly demonstrate the potential of blending as a promising approach towards satisfying the demands of tomorrows’ electret applications.  相似文献   

17.
The multiplet structure of νNH and νND bands of solid phtalimide, monothiophtalimide, dithiophtalimide, isatin, saccharin and of their deuterated analogues has been explained as being a result of Fermi resonance of the fundamentals of νNH and νND with combinations and/or overtones. The submaxima of 3080 and 2970 cm−1 of saccharin as well as pronounced doublet of 2465 and 2345 cm−1 of d-phtalimide move to lower frequency in the low temperature ir spectra, while the “windows” remain fixed at 3045 and 2380 cm−1, respectively. These examples could be a striking demonstration of Evans type Fermi resonance.  相似文献   

18.
Dielectric permittivities and loss tangents of 10 and 30% poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)–polystyrene (PS) blends and 10 and 25% poly(vinyl methyl ether) (PVME)–polystyrene blends have been measured from 80 to 360 K at 1 and 10 kHz. The PPO-PS blends have two secondary relaxations below Tg and the PVME-PS blends have three regions. All blends have a β process which appears near 290 K, is independent of PPO or PVME concentration, and is associated with the local modes of motions of PS chains. It is suggested that the β process of PS allows a dipolar reorientation of the PPO or PS chain segments by creating more favorable surroundings for the motions of the latter. The effect of physical aging in the PPO-PS blend is substantial but the “memory effect” is significantly less. This is due to the lower contribution to tanδ from the β process of the blend.  相似文献   

19.
This work demonstrates the application of FT-NIR spectroscopy in order to monitor the enzymatic interesterification process for butterfat modification. The reactions were catalyzed by Lipozyme TL IM at 70 °C for the blend of butterfat/rapeseed oil (70/30, w/w) in a packed-bed reactor. The blend and interesterified fat samples were measured in liquid form at 70 °C by transmission mode-based FT-NIR over the spectral region 12000–4000 cm−1. The calibration of FT-NIR for conversion degree (evaluated by the triglyceride profile, which was represented by the triglyceride peak ratio) and solid fat content (SFC) of the interesterified products was carried out using partial least squares (PLS) regression. Good correlations were observed between the NIR spectra and ln (peak ratio), and between the NIR spectra and the SFC at 5 °C over the spectral range 5269–4513 cm−1. Overall, transmission-mode FT-NIR spectroscopy performed at 70 °C yielded conditions close to those used during the interesterification process, implying that this method could be used to control the enzymatic interesterification process online.  相似文献   

20.
The combination of IR, Raman and NMR spectroscopy was used in the study of the blends of semicrystalline and amorphous polymers with considerably different strength of intermolecular interactions: poly(ϵ-caprolactam)/polystyrene (PCL/PS), poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) and poly(N-methyllaurolactam)/poly(4-vinylphenol) (PNMLL/PVPh). In the vibrational and NMR spectra of the blends composed of non-interacting polymers (PCL/PS) and weakly interacting polymers (PEO/PMMA), no band changes were observed which would indicate changes of the conformational structures. 1H NMR relaxation of the PCL and PS components in the blends is the same as in the respective homopolymers similarly treated. In the blends of weakly interacting polymers (PEO/PMMA), the crystallinity of PEO is influenced by the presence of PMMA and is negligible in the blends with less than 30 wt.-% of PEO. The rotating-frame spin-lattice relaxation time for protons TH1p of PMMA indicates close contact of the PMMA and PEO chains. In the blends PNMLL/PVPh with strong hydrogen-bonding interactions, both components are intimately mixed on a scale of 3–4 nm and significant shifts of some bands both in vibrational and in NMR spectra reveal changes of structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号