首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The flow behavior, dynamic viscoelasticity, and optical rotation of an aqueous solution of amylose were measured using a rheogoniometer and a polarimeter, respectively. The amylose solutions showed shear-thinning behavior at a concentration of 1.2%, but plastic behavior above 1.4% at 25 °C. With increasing amylose concentrations the viscosity decreased rapidly with increasing temperature from 20 to 25, 30, and 35 °C. These latter temperatures are estimated to be first transition temperatures at the respective concentrations. Viscosities were scarcely changed until temperatures reached 70, 90, and 90 °C, which were estimated to be second transition temperatures, for 1.2, 1.4, and 1.6% solutions, respectively. Gelation occurred at a concentration of 1.2% at room temperature (2.5 °C). The dynamic modulus of amylose increased gradually with increasing temperature from 20 to 30 °C and kept a constant value until the temperature reached 65, 75, and 80 °C for 1.0, 1.2 and 1.4% solutions, respectively, which were estimated to be transition temperatures, then dynamic modulus decreased rapidly. The dynamic modulus of amylose stayed at a very low value with addition of urea (4.0 M). The optical rotation of amylose solution (1.0%) increased a little with deceasing temperature up to 25 °C, then it increased rapidly with further decrease of the temperature. Possible mode of intra- and intermolecular hydrogen bonding within and between amylose molecules were proposed.  相似文献   

2.
Abstract

The non-Newtonian behavior and dynamic viscoelasticity of Takanari and Reimei amylopectin solutions were measured with a rheogoniometer. The Takanari and Reimei amylopectin showed plastic behavior at a concentration above 2.0% at 25 °C. The viscosity of Takanari amylopectin decreased a little with increasing temperature at 2.0%. However, a little increase in the viscosity was observed with increasing temperature from 0 to 15 °C, then it stayed at a constant value with further increase in the temperature up to 80 °C at a concentration above 4.0%. An increase in the viscosity was also observed in Reimei amylopectin solution at various concentrations. The dynamic viscoelasticity of Takanari amylopectin increased with increasing concentration at low temperature (0 °C) and it stayed at a constant value with increasing temperature up to 80 °C. On the other hand, dynamic viscoelasticity for Reimei amylopectin showed a weak sigmoid curve. The tan δ of both amylopectins showed low values, 0.32-0.38, at low temperature range and kept constant with increasing temperature up to 80 °C. A little decrease of dynamic modulus of Takanari and Reimei amylopectin was observed upon addition of urea (4.0 M). The dynamic modulus of Takanari and Reimei amylopectin solution decreased rapidly when the temperature reached 45 and 60 °C, which was estimated to be a transition temperature, in 0.10 N NaOH solution. The molecular origin for the thermal stability of rice amylopectin (Takanari and Reimei) was essentially attributed to intramolecular associations in aqueous solution. Possible mode of intramolecular hydrogen bonding and van der Waals forces of attraction of amylopectin molecules are proposed.

  相似文献   

3.
Gelation occurred at a concentration of 0.3% curdlan solution at room temperature (25 °C). The curdlan showed a Newtonian behavior at 0.1%, but plastic behavior above 0.2% even at a temperature of 38 °C. The dynamic modulus remained at a constant value with an increase of temperature up to 40 °C., which was estimated to be a transition temperature, then it decreased rapidly with an increase of temperature until 55 °C; however, it increased gradually with a further increase of temperature. The dynamic viscoelasticity of curdlan solution remained at very low values on addition of urea (4 M) and decreased with increasing temperature. The optical rotation of curdlan (0.1%) increased with a decrease of temperature.Possible modes of intra- and intermolecular hydrogen bonding within and between curdlan molecules were proposed. A hydrophobic interaction might take place at high temperatures (>55 °C), the mode of which was also proposed.  相似文献   

4.
ABSTRACT

The non-Newtonian behavior and dynamic viscoelasticity of rice starch (Nihonbare; amylose content, 15.8%) solutions were measured with a rheogoniometer. A gelatinization of Nihonbare starch occurred above 3.0% after heating at 100 °C for 30 min. The Nihonbare starch showed shear-thinning behavior at a concentration of 2.0%, but plastic behavior above 3.0% at 25 °C. The viscosity of Nihonbare starch at a concentration of 2.0% solution decreased gradually with increase in temperature from 10 to 55 °C, then it stayed at a constant value with further increase in the temperature. However, for 4.0% solution, rapid decrease in the viscosity was observed after the temperature reached 25 °C up to 50 °C, then it stayed at a constant value. The dynamic modulus of Nihonbare starch stayed at a constant value during increase in the temperature at 4%. The tan δ of the starch showed low values, 0.28, at low temperature range and stayed at a constant up to 30 °C, then it increased a little with increasing temperature. A little decrease of dynamic modulus of Nihonbare starch was observed at low temperature range upon addition of urea (4.0 M). The dynamic modulus, however, decreased rapidly when the temperature reached 50 °C, which was estimated to be a transition temperature. The dynamic modulus also decreased rapidly in 0.10 M NaOH solution above 50 °C. A possible mode of intermolecular hydrogen bonding between amylose and amylopectin molecules of Nihonbare starch is proposed. The short chains (A and B1) of the amylopectin molecules may take part in the intermolecular association in aqueous solution.  相似文献   

5.
The non-Newtonian behavior and dynamic viscoelasticity of S-657 polysaccharide solutions were measured with a rheogoniometer. The S-657 polysaccharide showed plastic behavior at a concentration of 0·1%. Gelation did not occur even at 1% and low temperature (0°C). The viscosity showed a constant value with increasing temperature below 0·3%, but it increased above 0·5%. Though the dynamic viscoelasticity stayed at a constant value at concentrations below 0·8% with increasing temperature, it increased and showed a sigmoid curve at 1%. Gelation did not occur in the presence of CaCl2 (6·8 mm) or urea (4·0 m) even at a low temperature (0°C). The thermal stability for viscosity and dynamic viscoelasticity of S-657 polysaccharide molecules might be attributed to intramolecular associations, possible modes of which were proposed.  相似文献   

6.
Poly-2,5-distyrylpyrazine (poly-DSP) was investigated by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and measurements of dynamic viscoelastic and electrical properties. From DTA and TGA studies it was confirmed that poly-DSP melts at 321°C and depolymerizes rapidly to the monomer at temperatures between 335°C and 345°C in helium. The polymer is affected by oxygen above 200°C. The E′ value from dynamic viscoelasticity measurements on amorphous film is 2 × 1011 dyne/cm2 at room temperature. It decrease abruptly in the temperature range 140–150°C; but the net decrease of E′ within this temperature range is relatively small. The electrical properties of amorphous poly-DSP are characterized by a small temperature dependence of the dielectric constant between room temperature and 100°C. The dielectric loss tangent was observed to be small, and the dc conductivity was extremely small. It is concluded that rotation of the phenyl branches in the polymer occurs above ?30°C and the glass transition occurs at about 150°C. These properties are discussed in some detail in relation to the polymer structure.  相似文献   

7.
The results of a study on the effects of a plasticizer, tricresyl phosphate, on the mechanical and thermal properties of unoriented films of poly(vinylidene fluoride–trifluoroethylene) (VF2/VF3) copolymer (73/27 mol%) are presented. Films were prepared by both quenching and slow‐cooling from the melt with plasticizer concentrations of 0, 5, and 10% by weight. For the slow‐cooled films, a reduction in crystallinity by 25% was observed for the heavily plasticized films, together with a reduced dynamic mechanical modulus (≈ 58%) and an increased dielectric constant (≈ 200%). For the quenched films, a small increase in crystallinity was observed together with a reduced modulus and an increased dielectric constant. Measurements of the temperature dependence of the modulus and dielectric constant at 10 Hz. were also carried out from −100°C to 100°C. This data showed that for slow‐cooled films the glass transition temperature decreased from −28°C to ‐52°C at the highest doping level. DSC thermal analysis shows a decrease in the Curie transition (≈ 4°C) and melting temperatures (≈ 9°C) for the quenched films, while the slow‐cooled films only showed a decrease in melting temperature (≈ 10°C), while the Curie transition temperature was unaffected. In addition, evidence of a two‐phase system or a nonferroelectric crystal phase is noted by the presence of two Curie transition temperature peaks. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 19–28, 1999  相似文献   

8.
cis-Dichloro(p-toluidine)(olefin)platinum(II) complexes, in which the olefin is either ethyl vinyl ether or ethylene, have been investigated by 1H NMR spectroscopy over a range of temperatures (+50 to ?60° C) in order to study the rotation of the olefin ligand.The results give no evidence of rotation of the amine or vinyl ether ligands even at the highest temperature investigated, +50°C; only one of the two possible rotational isomers is present, and this is attributed to the presence of intramolecular hydrogen bonding between the oxygen atom of the vinyl ether and the -NH- group of the amine.In contrast, the amine and vinyl ligands in the ethylene complex rotate freely at room temperature, coalescence being observed above ?25° C for the ethylene protons.  相似文献   

9.
The thermal behavior of films of amorphous silk fibroin in the random-coil conformation has been investigated in the temperature range 25–220°C by differential scanning calorimetry (DSC), thermal expansion, dynamic mechanical measurements, x-ray diffraction, and infrared spectroscopy. As the temperature is raised, water is lost up to about 100°C. Intramolecular and intermolecular hydrogen bonds are broken between 150 and 180°C. The glass transition is observed at 173°C by DSC. The random-coil→β-form transition accompanied by reformation of hydrogen bonds takes place above 180°C. Thermally induced crystallization to the β-form crystals starts at about 190°C.  相似文献   

10.
Temperature-induced sol–gel transition of cellulose/silk fibroin/1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was studied from the viscosity and dynamic modulus of the mixtures. The shear thinning behavior of the mixture solution was very obvious with a decrease in temperature. The curves of storage modulus G′ and loss modulus G″ were parallel when the temperature was below 20 °C, indicating that a gel structure exists in the system. The sol–gel transition process was described according to Winter and Chambon’s theory. The gel structure of the mixture system was loosened with the increase of silk fibroin concentration.  相似文献   

11.
Glass transition temperature and tan delta (the ratio of loss modulus to storage modulus) are indispensable parameters for determining appropriate application range of ETFE foils. In this study, ETFE foils in terms of specimen number, material direction and thickness were investigated with dynamic mechanical analysis (DMA) over a temperature range of -70-100 °C at frequencies of 0.1, 1, and 10 Hz. Glass transition temperatures were obtained with storage modulus, loss modulus and tan delta curves. It is found that frequency effect on glass transition temperature was proportional and that frequency effect was more significant than material direction effect. Moreover, a comparison study showed that elastic modulus determined with quasi-static experiments was greater than storage modulus calculated with dynamic mechanical experiments. To propose suitable glass transition temperature ranges for engineering application, an approach to determine confidence interval based on statistical analysis was employed. The resulting intervals with confidence coefficient of 95% were 31.2–32.7 °C, 60.5–66.4 °C and 79.6–83.3 °C for storage modulus, loss modulus and tan delta, respectively. In general, this study could provide useful observations and values for evaluating dynamic mechanical properties of ETFE foils.  相似文献   

12.
A commercial main-chain liquid-crystalline, naphthalene-based polyesteramide, was studied by three experimental techniques: extrusion capillary rheometry, dynamic viscoelasticity, and differential scanning calorimetry (DSC). From capillary rheometry a maximum at 360°C was observed in viscosity temperature curve. This result is compared with literature data for other thermotropics, and the possibility of a transition from a nematic to an isotropic phase is considered. The results obtained from dynamic viscoelasticity and DSC agree, and reveal the existence of a glass transition at 128°C (by DSC) and 137–147°C (by viscoelastic measurements, depending on frequency) as well as melting at 282°C. Annealing below 230°C produces two types of crystals, whereas annealing above this temperature gives rise to only one type of crystal, the melting temperature of which can be, depending on annealing time, as high as 340°C. The results are compiled in a phase diagram with six regions, four of them corresponding to the solid state, one to a liquid mesophase, and one to an isotropic phase.  相似文献   

13.
The influence of temperature and moisture activity on the viscoelastic behavior of fluorinated membranes for fuel cell applications was investigated. Uncrosslinked and crosslinked ethylene tetrafluoroethylene (ETFE)‐based proton‐conducting membranes were prepared by radiation grafting and subsequent sulfonation and their behavior was compared with ETFE base film and commercial Nafion® NR212 membrane. Uniaxial tensile tests and stress relaxation tests at controlled temperature and relative humidity (RH) were carried out at 30 and 50 °C for 10% < RH < 90%. Grafted films were stiffer and exhibited stronger strain hardening when compared with ETFE. Similarly, both uncrosslinked and crosslinked membranes were stiffer and stronger than Nafion®. Yield stress was found to decrease and moisture sensitivity to increase on sulfonation. The viscoelastic relaxation of the grafted films was found to obey a power‐law behavior with exponent equal to ?0.04 ± 0.01, a factor of almost 2 lower than ETFE, weakly influenced by moisture and temperature. Moreover, the grafted films presented a higher hygrothermal stability when compared with their membranes counterparts. In the case of membranes, a power‐law behavior at RH < 60% was also observed. However, a markedly different behavior was evident at RH > 60%, with an almost single relaxation time exponential. An exponential decrease of relaxation time with RH from 60 s to 10 s was obtained at RH ≥ 70% and 30 °C. The general behavior of grafted films observed at 30 °C was also obtained at 50 °C. However, an anomalous result was noticed for the membranes, with a higher modulus at 50 °C when compared with 30 °C. This behavior was explained by solvation of the sulfonic acid groups by water absorption creating hydrogen bonding within the clusters. A viscoelastic phase diagram was elaborated to map critical conditions (temperature and RH) for transitions in time‐dependent behavior, from power‐law scaling to exponential scaling. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1139–1148  相似文献   

14.
Qi  Xiaofei  Yan  Ning  Li  Hongyan  Zhao  Yu  Liu  Peijin  Yan  Qilong 《Cellulose (London, England)》2022,29(3):1307-1314

We performed dynamic mechanical analysis (DMA) on nitrocellulose (NC) plasticized by an insensitive plasticizer N-butyl-N-(2-nitroxy-ethyl)nitramine (Bu-NENA). NC/Bu-NENA blend shows two mechanical relaxation processes in the temperature ranges of???50 to???40 °C and 30?~?40 °C, and their variations with deformation frequencies were studied. To explore further the effect of temperature on relaxation, the binary mixture model of NC/Bu-NENA was constructed, and molecular dynamic simulations were conducted. The simulated mean square displacements (MSD) show abrupt increase in the temperature range of???50 to???40 °C and 30?~?40 °C, which are consistent with those of the two relaxation processes observed in the DMA curves. Moreover, the free volume (Vfree) and torsion energy obtained from molecular dynamic simulations exhibit distinct increase at the temperature above 30 °C and???50 °C respectively, reflecting the sudden enhancements on the mobility of polymer chain elements and the rotation of molecular bonds. Furthermore, the radial distribution function (RDF) associated with the intermolecular interactions reveals that the intensities of both hydrogen bond and van der Waals forces decrease with the increase of temperature, which is responsible for the decrease of storage modulus at high temperature. These computational and experimental studies reveal guidance to strengthening the NC base propellants in broad temperature range.

  相似文献   

15.
A new main-chain syndioregic (head-to-head) NLO polymer was synthesized. The glass transition temperature of high molecular weight polymer was found to be 208°C, and the polymer has minimal weight loss at temperatures to at least 250°C owing to the incorporation of hydrogen bonding moieties and rigid bridging groups. The polymer was further characterized using nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The study of the nonlinear optical properties of this polymer are in progress. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E′ and the loss modulus E″ curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70°C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170°C.  相似文献   

17.
Tractable polysilanes were prepared by the copolymerization of a methyl‐n‐propylsilylene (MP) unit into poly(dimethylsilylene), which neither dissolves in common solvents nor melts before decomposition. Although poly(dimethylsilylene‐co‐methyl‐n‐propylsilylene) has poor solubility in the composition range of the dimethylsilylene (DM) unit to the MP unit (DM/MP = 7/3 ∼ 9/1), the copolymers form the columnar mesophase at elevated temperatures. Highly oriented rods were prepared via the extrusion of the copolymers with a circular tube die in a temperature range in which the transition to the columnar mesophase began to occur (70°C when DM/MP = 7/3 and 8/2 and 120°C when DM/MP = 9/1). The extruded rods were characterized in detail by dynamic viscoelasticity and wide‐angle X‐ray diffraction (WAXD) to clarify the structure–mechanical‐property relationship. The orientation functions of the extruded rods were determined by the azimuthal intensity distribution of the WAXD reflection. The orientation function and dynamic storage modulus increased with an increasing extrusion ratio. The dynamic storage modulus at −150°C was 8 ∼ 10 GPa at the highest extrusion ratio and correlated well with the crystal orientation function. The dynamic storage modulus at room temperature was lowered by the structural relaxations at −100 ∼ +30°C, which corresponded to the molecular motion of the rigid molecular chains of the copolymer and the local molecular motion of the MP unit. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 698–706, 2000  相似文献   

18.
Sol–gel transition of cellulose solution in NaOH/urea aqueous solution with the addition of epichlorohydrin (ECH) was investigated by rheological means. The gelation was controlled by a synergy of chemical and physical cross-linking processes, namely, the etherification reaction between cellulose and ECH as well as the self-association and entanglement of cellulose chains via hydrogen bonding re-construction in NaOH/urea. The results revealed that the cross-linker concentration, cellulose concentration and temperature played important roles in the gelation behavior. The gel time decreased with increasing either ECH or cellulose concentration, and the gel temperature dropped from 38 to 28 °C with an increase of cellulose concentration from 4 to 6 wt%, i. e. easier gelation was reached with higher cross-linker concentration, cellulose concentration or temperature, since higher cross-linker or cellulose concentration led to more network junctions via chemical or physical cross-linking, while higher temperature was favorable to both the etherification reaction and re-construction of cellulose hydrogen bonds. The compressive modulus of cellulose/ECH hydrogels was improved a lot by increasing either cellulose or ECH concentration, indicating the chemical cross-linking obviously improved the mechanical property, on the other hand, the swelling property could be tunable by changing the gelation parameter. This work supplied useful information to the control and optimization of the structure and properties of cellulose based hydrogels.  相似文献   

19.
Acetylthioacetamides exist as different keto and enol isomers in chloroform solutions. The keto form with intramolecular hydrogen bonding between the NH and the carbonyl group is the dominant keto isomer. On the other hand the enol forms with intramolecular hydrogen bonding between the OH and the thioketo group are the dominant enol isomers in the temperature range 60°C to ?60°C. The thermodynamic data of the keto-enol equilibria were obtained by measuring the intensities of appropriate high resolution proton signals as a function of temperature. At low temperatures all lines characteristic of the enol forms are doubled in the N-phenyl-substituted derivatives because the rotation of the NH? C6H5 group around the C? N bond becomes slow and the chemical shifts characteristic of the E and Z isomers are different. We estimated approximate thermodynamic data of the E/Z equilibrium in some of the compounds. The changes of the line shape as well as the chemical shifts as a function of temperature indicate the presence of various additional exchange processes. In order to obtain further information we performed curve fittings of the chemical shifts of one acetylthioacetanilide and of a series of monothio-β-diketones (studied in another paper) assuming a fast two site exchange process. On the basis of the results obtained a reaction scheme for N-substituted acylthioacetanilides in solution is proposed.  相似文献   

20.
The structural evolution with temperature of an anionically synthesized ABA poly(styrene-b-isoprene) (SIS) lamellar block copolymer (total molecular weight 45,000; isoprene content 38% by weight) was studied by melt-rheological measurements, electron microscopy, and x-ray and light diffraction. Above 225°C, the dynamic viscosity was found to be independent of frequency up to a critical frequency. The variation of the elastic modulus confirmed the occurence of a transition between 215 and 225°C. For the temperature range considered, all results superimposed well on a two-branch master curve. It was concluded that above 225°C, our SIS behaves like a Newtonian material, whereas for lower temperatures and/or higher frequencies classical non-Newtonian behavior is found. The melt-rheological properties were explained by microscopy and diffraction investigations, which allowed us to follow morphological changes as the temperature was raised. It was found that the two-phase lamellar structure is progressively destroyed, and the transition temperature of 225°C corresponds to the temperature above which complete mixing occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号