首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal shrinkage of stretched crosslinked high-density polyethylene (HDPE) was investigated with the aim to produce heat shrinkable materials. The heat shrinkable property was achieved by a process of heating-stretching-cooling by aid of tensile machine on crosslinked HDPE obtained by compounding with various amount of peroxide. Effect of stretching ratio and stretching temperature on thermal and shrinkage behaviour at varying peroxide contents was investigated. The results showed that crosslinking hindered the crystallization process by decreasing the melting and crystallization temperatures as well as the total degree of crystallinity. The stretching ratio had no significant effect on shrink temperature but rather on ultimate shrinkage. The stretching temperature had relatively significant influence on the shrink temperature. Crosslinked HDPE stretched at above melting point (140 °C) had higher shrink temperature as compared to those stretched at lower temperature (90 °C). These effects could be reasonably explained by Hoffman theory and changes in crystallites size and total amount of crystallinity.  相似文献   

2.
Transient electric birefringence has been used as an analytical tool to study the orientation of DNA in agarose gels, and to study the orientation of the matrix alone. The sign of the birefringence of DNA oriented in an agarose gel is negative, as observed in free solution, indicating that the DNA molecules orient parallel to the direction of the electric field. If the median pore diameter of the gel is larger than the contour length of the DNA molecule, the DNA effectively does not see the matrix and the birefringence relaxation time is the same as observed in free solution. However, if the median pore diameter of the gel is smaller than the contour length of the DNA, the DNA molecule becomes stretched as well as oriented. For DNA molecules of moderate size (less than or equal to 4 kb), stretching in the gel causes the birefringence relaxation times to increase to the values expected for fully stretched molecules. Complete stretching is not observed for larger DNA molecules. The orientation and stretching of DNA molecules in the gel matrix indicates that end-on migration, or reptation, is a likely mechanism for DNA electrophoresis in agarose gels. When the electric field is rapidly reversed in polarity, very little change in the orientation of the DNA is observed if the DNA molecules were completely stretched and had reached their equilibrium orientation before the field was reversed in direction. Hence completely stretched, oriented DNA molecules are able to reverse their direction of migration in the electric field with little or no loss of orientation. However, if the DNA molecules were not completely stretched or if the equilibrium orientation had not been reached, substantial disorientation of the DNA molecules is observed at field reversal. The forced rate of disorientation in the reversing field is faster than the field-free rate of disorientation. Complicated patterns of reorientation can be observed after field reversal, depending on the degree of orientation in the original field direction. The effect of pulsed electric fields on the orientation of the agarose gel matrix itself was also investigated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Single terrylene molecules doped into linear low-density polyethylene can be oriented by tensile deformation of the matrix. In measurements on ensembles at ambient and on single terrylene molecules at cryogenic temperature, strong orientation along the stretching direction was observed by polarization-resolved confocal microscopy. At cryogenic temperatures narrow and spectrally stable zero-phonon lines were found. The low saturation intensity of 0.07 W cm(-2) is consistent with an uniaxial orientation of terrylene in the sample plane.  相似文献   

4.
The orientational states induced upon two-step biaxially stretching low-density polyethylene at 25°C have been investigated. A pole figure analysis of the (200), (020), and (002) crystalline planes has been employed to elucidate the evolution of the molecular crystalline orientation as a function of biaxial stretching. The initial uniaxial-like orientation induced along the extrusion direction of the films was gradually lost upon transverse stretching and, consequently, replaced by a biaxial orientation as suggested by the orientation functions. In these cases, the a crystallographic axis was observed to be strongly oriented along the film normal, thus confining the c and b axes to the film plane. The pole figures clearly indicate that the c and b axes are preferentially aligned 45° with respect to the stretching directions. This unique orientational state of the orthorhombic unit cell of polyethylene has been termed a biaxial-double orientation. Birefringence measurements on the biaxial samples indicated that the amorphous and crystalline regions are simultaneously biaxially oriented. The evolution of the crystalline orientation as a function of stretching was conveniently followed on a White/Spruiell orientation triangle. Quantification was hindered, however, by the presence of different crystal populations in the biaxially stretched samples. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
In order to elucidate microscopic deformation behavior at different locations in isotropic semicrystalline polymers, the structural evolution of a preoriented high‐density polyethylene sample during tensile deformation at different temperatures and along different directions with respect to the preorientation was investigated by means of combined in situ synchrotron small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For samples stretched along preorientation, two situations were found: (1) at 30 °C, the sample broke after a moderate deformation, which is accomplished by the slippage of the microfibrils; (2) at 80 and 100 °C, fragmentation of original lamellae followed by recrystallization process was observed resulting in new lamellar crystals of different thickness depending on stretching temperature. For samples stretched perpendicular or 45° with respect to the preorientation, the samples always end up with a new oriented lamellar structure with the normal along the stretching direction via a stress‐induced fragmentation and recrystallization route. The thickness of the final achieved lamellae depends only on stretching temperature in this case. Compared to samples stretched along the preorientation direction, samples stretched perpendicular and 45° with respect to the preorientation direction showed at least several times of maxima achievable stress before macroscopic failure possibly due to the favorable occurrence and development of microdefects in those lamellar stacks with their normal parallel to the stretching direction. This result might have significant consequence in designing optimal procedure to produce high performance polyethylene products from solid state. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 716–726  相似文献   

6.
The effects of equibiaxial extensional flow on the structural state of a thermotropic liquid crystal aromatic copolyester are studied through wide-angle X-ray scattering (WAXS), strain recovery above the melting point, and differential scanning calorimetry (D.S.C.). For that purpose, samples were melted, stretched and cooled to room temperature. WAXS patterns and strain recovery show that equibiaxial extension (achieved through the lubricated squeezing experiment) results in a planarly-oriented state, i.e. preferred molecular orientation perpendicular to the compression direction accompanied by random molecular orientation within the plane of extension. This flow-induced oriented state may relax partially if not prevented by stretching in the super-cooled liquid state (10-30 K below the melting point). Quenching immediately after deformation at a high temperature can also result in the retention of a high degree of orientation, but it lowers the degree of crystallinity. D.S.C. data show that low cooling rates and large extensions lead to the highest crystallinity. Strain recovery upon reheating is remarkably high for samples with high orientation. This large recovery is attributed to the elasticity of the macrostructure which is formed by the LCP molecules (structural elasticity) and not to the elasticity of the molecules.  相似文献   

7.
The morphology and its formation has been studied for the steady-rate stretching operation of polytetrafluoroethylene (PTFE) porous membranes, which were prepared from PTFE fine powders with a mean diameter of approximately 2×102 nm through extruding and rolling operations prior to the stretching operation. The uniaxially stretched membranes were produced by the unique stretching operation parallel to the rolling operation, and the biaxially stretched membranes by the dual operations consisting of the parallel and the subsequent perpendicular stretches. The inversion of the stretching direction, i.e., the first stretching operation perpendicular to the rolling operation and the second one parallel has been observed to be impossible due to the occurrence of macroscopic fractures on the membrane during the first stretching operation. The uniaxially stretched porous membranes are comprised of fibrils completely oriented in the stretching direction and remaining island-like fractures of the rolled PTFE sheet. The second stretching operation provides a lattice-like porous structure by giving the island-like fractures further division along the second stretching direction and the fibrils slant from the original orientation. The stretching operation is possible within the range where the relative elongation of the whole membrane along the second stretching direction is less than 50% of that along the first one, indicating that the fibrils yielded by the first stretching operation sustain the lattice-like porous structure induced by the second stretching operation. The distribution of the slant angle of the fibrils is independent of the elongation in the second stretching operation, thus, the division of the island-like fractures linked with the fibrils steadily proceeds during the second stretching operation.  相似文献   

8.
The stress-induced crystallization of trans 1,4-polybutadiene was studied by observing changes in birefringence, stress, x-ray diffraction, and low angle light scattering during the course of crystallization. From these data, the degree of crystallinity was determined as a function of time, temperature, and elongation. Data were fitted to the Avrami equation, leading to an exponent of the order of unity. Light-scattering patterns suggested the simultaneous existence of two stretched forms: a rod-like structure oriented preferentially parallel to the stretching direction and a deformed spherulitelike growth with its greatest extension perpendicular to the stretching direction.  相似文献   

9.
A mathematical representation based on a linear elastic theory is proposed by which one may investigate the dependences of molecular orientation and crystallinity on the crystal lattice moduli and linear thermal expansion coefficients in the direction perpendicular to the chain axis as commonly measured by x-ray diffraction. In the theoretical calculation, a previously introduced model was employed in which oriented crystalline phase is surrounded by oriented amorphous phase and the strains of the two phases at the boundary are identical. The mathematical analysis indicated that the lateral crystal lattice moduli and linear thermal coefficients as measured by x-ray diffraction may be different from the intrinsic crystal moduli and linear thermal coefficients of a crystal unit cell, depending on the structure of the polymer solid. The numerical calculation was applied to nylon 6. As a result, it may be confirmed that the lateral crystal lattice moduli measured by x-ray diffraction are sensitive to the morphology of the bulk speciments and close to the intrinsic crystal moduli if the morphology of the test specimen can be represented by a parallel model with respect to the original stretching longitudinal direction.  相似文献   

10.
Anisotropic thermal transport in a crosslinked polyisoprene (natural rubber) subjected to uniaxial elongation is investigated experimentally. Using a novel optical technique based on forced Rayleigh scattering, two components of the thermal diffusivity tensor are measured as a function of stretch ratio. The thermal diffusivity is found to increase in the direction parallel, and decrease in the direction perpendicular, to the stretch direction. The level of anisotropy for the natural rubber is substantially lower than that reported by Tautz 50 years ago but comparable to that found in our previous studies on molten polymers, quenched thermoplastics, and other crosslinked elastomers. Thermal diffusivity data along with measurements of the tensile stress were used to evaluate the stress‐thermal rule, which was found to be valid over the entire range of stretch ratios. In contrast, failure of the stress‐optic rule was observed at stretch ratios well below the largest value at which the stress‐thermal rule was valid. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and stretch of polymer chain segments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
In order to promote better understanding of the structure‐mechanical properties relationships of filled thermoplastic compounds, the molecular orientation and the degree of crystallinity of injection molded talc‐filled isotactic polypropylene (PP) composites were investigated by X‐ray pole figures and wide‐angle X‐ray diffraction (WAXD). The usual orientation of the filler particles, where the plate planes of talc particles are oriented parallel to the surface of injection molding and influence the orientation of the α‐PP crystallites was observed. The PP crystallites show bimodal orientation in which the c‐ and a*‐axes are mixed oriented to the longitudinal direction (LD) and the b‐axis is oriented to the normal direction (ND). It was found that the preferential b‐axis orientation of PP crystallites increases significantly in the presence of talc particles up to 20 wt% in the composites and then levels‐off at higher filler content. WAXD measurements of the degree of crystallinity through the thickness of injection molded PP/talc composites indicated an increasing gradient of PP matrix crystallinity content from the core to the skin layers of the molded plaques. Also, the bulk PP crystallinity content of the composites, as determined by DSC measurements, increased with talc filler concentration. The bulk crystallinity content of PP matrix and the orientation behavior of the matrix PP crystallites and that of the talc particles in composites are influenced by the presence of the filler content and these three composite's microstructure modification factors influence significantly the flexural moduli and the mechanical stiffness anisotropy data (ELD/ETD) of the analyzed PP/talc composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
用偏振红外光谱方法研究了拉伸速率和不同拉伸方式,包括单轴拉伸、双轴同时拉伸和双轴依次拉伸等,对PET薄膜取向的影响。对由不同拉伸方式制得的反式结构含量和密度均基本相同的试样进行比较得出:单轴拉伸试样中分子链相对拉伸方向的轴取向程度最高,分子链在薄膜平面内的取向分布亦最不均匀;双轴拉伸试样中分子平面(苯环面)相对薄膜平面有明显的平面取向,而单轴拉伸试样中分子平面和薄膜平面基本上无共平面趋势。在所用的实验条件下,拉伸速率对取向程度几乎没有影响。  相似文献   

13.
PTFE specimens with a crystallinity of 42 % were uniaxially stretched at 473 K resulting in draw ratios between 1. and 4. The degree of molecular orientation was obtained by X-ray wide angle and birefringence measurements. The thermal expansion coefficients and the Young's moduli both parallel and perpendicular to the draw direction were measured in the temperature range from 100 to 400 K. The thermal expansion behaviour turned out to be dependent upon the molecular orientation in a sensitive manner and could be explained by a simple model of structure changes caused by the deformation processes.  相似文献   

14.
Four β‐nucleated polypropylene samples with increasing die draw ratio (DDR) were prepared to modify lamellae arrangement. The DSC, SEM, and 2D‐XRD results show that all four cast films had similar crystallinity, high contents of β‐crystal but lowering stability of β‐lamellae with ascending DDR. Meanwhile, the anisotropy of β‐lamellae distribution strengthens gently and the stacked lamellae structure perpendicular to the machine direction (MD) predominates dramatically. Tensile testing at 25 °C and 90 °C were conducted along MD and transverse direction (TD), respectively. The markedly expanding difference of deformation indicates the anisotropy highlighted significantly. Additionally, when the samples stretched along MD, a more homogeneous deformation occurs with ascending anisotropy, which is completely opposite to the β‐lamellae stability. But samples deformed more heterogeneous when stretched along TD. The characterization of morphological evolutions during stretching shows that the stacked lamellae debonds uniformly and abundant microvoids formed when the sample stretched along MD with higher anisotropy, resulting in evenly dispersion of stress, consequently making a more uniform distribution of defects and a better isotropic deformation. Moreover, the microfibrils and defects distributed uniformly within higher orientation sample after longitudinal stretching stretched along MD, leading to the dramatic improvement of pore size distribution of the membrane after biaxial stretching. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1745–1759  相似文献   

15.
We propose a new method of calculating elastic modulus and atomic displacements of a stretched polymer chain. We use a stretched Cartesian coordinate system and a stretched B matrix defined by the Cartesian displacement components of the bonds to express the potential energy matrix Fx for stretching. The method is used to calculate elastic moduli of planar-zigzag-chain vinyl polymers and helical-chain isotactic polypropylene and the atomic displacements of their skeleton and side groups. The skeletal displacements of planar-zigzag-chain polymers are about ten times larger than those of the side groups and reverse displacements of the two adjacent skeletal units occur in the direction perpendicular to the stretching direction along the fiber axis. In the case of isotactic polypropylene, the methyl group has more effect than the torsional change around the C? C bond on the skeletal deformation. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
An experimental study was made of the effects of prior molecular orientation on large tensile deformations of polystyrene in the glassy state. A new hybrid glass-melt constitutive model is proposed for describing and understanding the results, achieved by parallel coupling of the ROLIEPOLY molecularly-based melt model with a model previously proposed for polymer glasses. Monodisperse and polydisperse grades of polystyrene are considered. Comparisons between experimental results and simulations illustrate that the model captures characteristic features of both the melt and glassy states. Polystyrene was stretched in the melt state and quenched to below Tg, and then tensile tested parallel to the orientation direction near the glass transition. The degree of strain-hardening was observed to increase with increasing prior stretch of molecules within their entanglement tubes, as predicted by the constitutive model. This was explored for varying temperature of stretching, degree of stretching, and dwell time before quenching. The model in its current form, however, lacks awareness of processes of subentanglement chain orientation. Therefore, it under-predicts the orientation-direction strain hardening and yield stress increase, when stretching occurs at the lowest temperatures and shortest times, where it is dominated by subentanglement orientation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1449–1463, 2010  相似文献   

17.
We investigated the uniaxial deformation behavior of crosslinked low‐density polyethylene in partially and substantially molten states using a real‐time true stress–strain birefringence system. The stress–birefringence behavior exhibits a multiregime behavior during stretching and holding process. The details of this regime behavior are primarily governed by the degree of unmelted crystallinity as it has a dominant role in the long‐range structural connectivity. When the long‐range physical connectivity is present, a three‐regime nonlinear stress–optical behavior was observed. When the long‐range connectivity is substantially eliminated at higher temperatures, the regime I behavior disappears. Structural studies including cooling process reveal that the lower the proportion of molten material during stretching, the higher the concentration of fibrillar structure and the shorter are the lengths of the kebabs that exhibit twisted lamellae after solidification. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1825–1841, 2005  相似文献   

18.
Miscible blends of PHB and CAB were prepared by the solvent-casting method with various blend compositions, and their orientation behavior was investigated during uniaxial drawing. X-ray analysis revealed that the orientation of the crystallizable PHB component in the drawn PHB/CAB blends was changed from c-axis-orientation to a-axis-orientation with increasing CAB content. The a-axis-orientation was a result from the a-axis-oriented crystal growth caused by the intramolecular nucleation and the confined crystal growth. For quantitative assessment of the chain orientation, the Hermans orientation functions of the two respective components were obtained from the polarized FT-IR measurements. The orientation function of pure PHB stretched to 5 times of its initial length was approximately 0.8. However the value decreased rapidly with increasing CAB content, and it turned to a negative value from 30 wt.-% CAB content. This indicates that the PHB chains were aligned perpendicular to the drawing direction. On the contrary, the value of the CAB component remained almost unchanged at about 0.1 regardless of the blend composition and the annealing time, indicating that the CAB chains were constantly oriented parallel to the drawing direction without any chain relaxation. In addition, SAXS analysis suggested that the lamellar stacking direction also changed from parallel to perpendicular in the stretching direction with increasing CAB content.  相似文献   

19.
利用自行设计制造的剪切拉伸双向复合应力场挤管装置生产出了双向自增强的无规共聚聚丙烯(PP-R C180)管材,研究分析了该双向应力场的剪切诱导效应对PP-R C180管材的结晶熔融、取向和拉伸强度的影响.结果表明,剪切拉伸双向复合应力场的引入所带来的剪切诱导效应促进了PP-R C180分子有序性的增加,使PP-R C180体系分子更容易形成分别沿管材周向和轴向方向的取向,因而保持甚至提高了耐热性与结晶速率,降低了结晶度,改变了PP-R C180的结晶结构与形态,诱导出了全新的β晶,进而改善了管材的强度性能.与常规管材相比,自增强管材在保持其熔点不降低的前提下,使结晶度从常规管材的44.96%降至40.03%,降低了4.93%;轴向强度从常规管材的23.35 MPa最高增强到25.49 MPa,提高了9.2%;周向强度从常规管材的22.71 MPa最高增强到26.54 MPa,提高了16.9%,且增强之后管材的周向强度已经高于了轴向强度,更优化地配置了聚合物材料的性能,更充分地满足了受内压管材使用的现实需求.  相似文献   

20.
The structural evolution during uniaxial stretching of poly(vinyl chloride) films was studied using our real time spectral birefringence stretching machine. The effect of clay loading and the amount of plasticizer as well as the rate effects on the birefringence development and true mechanical response are presented with a final model summarizing the molecular phenomena during stretching. Mechano‐optical studies revealed that birefringence correlated with mechanical response (stress, strain, work) nonlinearly. This was primarily attributed to the preexisting strong network of largely amorphous chains connected via small crystallites that act as physical crosslinking points. These crystallites are not easily destroyed during the high‐speed stretching process as evidenced from the birefringence–true strain curves along with the X‐ray crystallinity measurements. At high speeds, the amorphous chains do not have enough time to relax and hence attain higher orientation levels. The crystallites, however, orient more efficiently when stretched at slow speeds. Apparently, some relaxation of the surrounding amorphous chains helps rotate the crystallites in the stretching direction. Overall birefringence is higher at high stretching speeds for a given true strain value. When the nanoparticles are incorporated, the orientation levels are increased significantly for both the crystalline and amorphous phases. Nanoplatelets increase the continuity of the network because they have strong interaction with the amorphous chains and/or crystallites. This in turn helps transfer the local stresses to the attached chains and increase the orientation levels of the chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 724–742, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号