首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morphology of homogeneous copolymers of ethene and 1-octene synthesized using a V-based Ziegler-Natta catalyst was studied as a function of the short chain branching content (SCBC) and the molar mass. Linear polyethylenes (LPE) were used as reference material. For the linear samples an increase in molar mass results in an increase of the long period and the crystalline lamella thickness. A decrease of cooling rate results in an increase of the melting temperature, the long period and the crystalline lamella thickness and an evolution from spherulitic structures to perfectly stacked lamellae. For the branched samples, increasing the SCBC results in a decrease of the melting and the crystallization temperature, crystallinity, spherulite radius, the long period, and the crystalline lamella thickness. The two latter tend to a limiting value on reaching a SCBC of 20CH3/1000C. On the other hand, an increase of the a axis and to a lesser extent the b axis of the unit cell is observed. Decreasing the cooling rate affects only the crystallinity of the least branched samples. Furthermore decreasing the cooling rate results in smaller spherulites, has a minor influence on the lamellar parameters and reduces the dimensions of the basal plane of the unit cell. Increasing the molar mass of the branched samples results in a drop of the crystallinity, a deterioration of the superstructure, enlarges the amorphous layer thickness and the dimensions of the basal plane. All these observations can be accounted for by the different crystallization regimes being applicable when different molar masses, SCBC and cooling rates are used. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2689–2713, 1997  相似文献   

2.
Short aliphatic polymer chains of different lengths were prepared by degrading polyethylene samples of appropriately chosen initial fold lengths to the chain lengths which correspond to a single chain traverse through the lamella. The resulting dicarboxylic acids were either used as such for further crystallization experiments or were first converted into diiodides to remove polar endgroups. The resulting short polymers all crystallized by chain folding even if the chains (peak of distribution) were only 1.5–4 times the length of a traverse through the lamella. In the diiodides the fold length varied continuously with crystallization temperature, as is usual in high molecular weight material, but with the dicarboxylic acids such variation, while observable, was only small. The effect of the molecular weight on the fold length due to its influence on supercooling at a given crystallization temperature has become apparent. Renewed degradation with nitric acid and subsequent GPC analysis of the degradation products confirmed the folded nature of the chains in the above crystals. This analysis combined with experiments on the reactivity of chain ends has led to the picture that each chain folds completely, once, twice etc. so that both folds and ends are in the surface zone but are located at varying heights, as appropriate to the overall layer thickness for the molecular weight distribution in question. This picture is consistent with other concurrent work.  相似文献   

3.
We investigate the problem of polymer translocation through a nanopore in the absence of an external driving force. To this end, we use the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions, we consider a polymer which is initially placed in the middle of the pore and study the escape time tau required for the polymer to completely exit the pore on either end. We find numerically that tau scales with the chain length N as tau approximately N(1+2nu), where nu is the Flory exponent. This is the same scaling as predicted for the translocation time of a polymer which passes through the nanopore in one direction only. We examine the interplay between the pore length L and the radius of gyration R(g). For LR(g), we find tau approximately N. In addition, we numerically find the scaling function describing crossover between short and long pores. We also show that tau has a minimum as a function of L for longer chains when the radius of gyration along the pore direction R( parallel) approximately L. Finally, we demonstrate that the stiffness of the polymer does not change the scaling behavior of translocation dynamics for single-segment dynamics.  相似文献   

4.
The morphological details of the nucleation and growth of spherulites in cis-polyisoprene at elevated pressures are discussed on the basis of transmission electron microscopy of films stained in situ by osmium tetroxide and cold-stage electron diffraction of unstained films. The crystalline structure is unchanged but growth habits are modified. Spherulites begin, as in crystallization at atmospheric pressure, with a single lamella. The formation of a spherulite proceeds primarily through “spawning” and is unaffected by the imposition of pressure. Lamellae tend to propagate as plates or hedrites at supercoolings in excess of 50–60°C (e.g., 1 kbar at 0°C) unlike at atmospheric pressure where only ribbonlike lamellae are observed. Propagation is invariably as sheafs since nucleation of lamellae which grow perpendicular to the primary lamella is suppressed. The nucleation density varies considerably with pressure, a maximum being observed in the pressure plane at constant temperature (e.g., 0.70 kbar at 0°C). It is difficult to resolve clearly the morphological details in the diffusion controlled region because of fine texture. Although much more difficult to achieve experimentally, the effects of pre-orienting the melt are similar to those occurring at atmospheric pressure.  相似文献   

5.
Influences of branch content (BC) and branch length (BL) on isothermal crystallization of precisely branched polyethylene are studied by molecular dynamics simulation. Branch acts as a defect both in nucleation and crystal growth process. BC affects not only crystallization kinetics but also final morphologies. Crystallization rate and crystallinity decrease as BC increases. Morphology Regimes change from lamellae crystal to bundle crystal at critical BC (20/1000 C) because of different folding pattern. 50 CH2 is the critical methyl sequence length to form lamellae crystal. Lamellae thicknesses of final morphologies decrease in gradient corresponding to Morphologies Regimes. BL has no influence on the crystallization kinetics, and only affects the final morphologies when more branches inclusion happens with BL increasing. Trans‐rich phenomenon in pre‐crystalline state is observed. Crystallization process begins at the end of induction stage when trans state population reaches a critical value, and this value is independent of BC and BL.  相似文献   

6.
The Kirkwood g-factor that determines the long wavelength dielectric constant of a simple, isotropic, translationally invariant dipolar fluid is given by an integral of a dipole-dipole correlation function over a spherical region of a nonzero radius R(K) chosen such that any further increase in the radius leads to no change in the value of the integral, thereby defining a Kirkwood correlation length R(K). For radii less than the correlation length the integral defines a radius dependent (nonlocal) Kirkwood g-factor, implying a nonlocal dielectric function. The nonlocal nature of these quantities has important consequences for the determination of the long wavelength dielectric function from dipole fluctuations via the Kirkwood-Fro?hlich connection. The dipole-dipole correlation function (the volume dipole auto-correlation function) commonly used in this determination involves particles residing solely within a sphere of radius R, unlike the correct correlation function which involves either a single particle with those particles in a spherical volume of radius R(K) or those particles in a spherical volume of radius R with those residing within a spherical volume of radius R+R(K). A procedure is suggested for extracting the infinite system dipole-dipole correlation function from results of simulations performed on finite spherical samples. Using some results reported in the recent literature, relative to the accurate correlation function the commonly used correlation function ranges from 27% too small for a sphere having a radius comparable to the Kirkwood correlation length to 4% too small at a radius of seven times that correlation length. As a result, the apparent dielectric constants, as determined by the conventional procedure of using the fluctuations of the sum of dipoles in a finite fixed volume, are also too small. This suggests that a dielectric constant extracted from computer simulations using a total dipole-total dipole correlation function in a given volume with other geometries and/or boundary conditions will result in similar errors.  相似文献   

7.
The formation of solid photochemical decomposition products of silver carboxylates with long linear hydrocarbon chains and its variation in the course of reaction was investigated. At the initial stage of photolysis, particles of silver are formed with the overall situation analogous to that in the case of other silver salts. After the degree of decomposition has reached 20%, the formation of a space-ordered structure of solid products in the form of alternating volume lamellae of paraffin and silver is observed. The average distance from one lamella edge to the next lamella edge is dependent upon the length of the methylene chains of silver carboxylates and the intensity of irradiation. The results obtained are discussed from the point of view of possible spinodal character of decomposition of intermediate solid solution paraffin-silver carboxylate.  相似文献   

8.
The speed at which an annular liquid collar drains under gravity g in a vertical tube of radius a, when the tube has an otherwise thin viscous liquid lining on its interior, is determined by a balance between the collar's weight and viscous shear stresses confined to narrow regions in the neighborhood of the collar's effective contact lines. Whether a collar grows or shrinks in volume as it drains depends on the modified Bond number B=rho g a(2)/(sigmaepsilon), where rho is the fluid density, sigma is its surface tension, and epsilona is the thickness of the thin film immediately ahead of the collar. Asymptotic methods are used here to determine the following nonlinear stability criteria for an individual collar, valid in the limit of small epsilon. For 0相似文献   

9.
韩志超  程贺 《高分子科学》2014,32(9):1260-1270
A uniform to accelerated crystal twisting transition is observed in deuterate polyethylene/poly(ethylene-alt- propylene) (d-PE/PEP) blend films. And the band period is a function of initial d-PE concentration, quench depth and annealing time of phase separation. As Keith and Padden suggested, twisting of lamella is due to the unbalanced stress on its both sides, which can supply a satisfying explanation to banded spherulites formed in homogeneous systems. When it comes to d-PE/PEP blend system, in homogeneous 99% d-PE/PEP (weight fraction of d-PE) blend film, the formation of banded spherulite is observed as a result of uniform twisting of ribbon like d-PE lamellae along the radial direction. With the amorphous PEP piling up, it transfers into accelerated edge-on to fiat-on twisting due to crystallization assisted phase separation. The mechanism can be interpreted as following: d-PE molecules must inter-diffuse to the twisting growth front to continue the secondary nucleation and growth process. Meanwhile, the amorphous PEP molecules are rejected and accumulated at the twisting growth front. Once the d-PE lamella begins to twist because of unbalanced stress on both sides, the accumulated rubber phase at the growth front strengthens the unbalance and accelerates the edge-on to flat-on twisting. The concentration wave propagates further away with constant speed, and leads to concentric ring pattern with periodic nonuniform twisting along the radial direction. Since this is a kinetic effect, the band period can be controlled through initial d-PE concentration, quench depth and annealing time of phase separation. Our result shows that crystallization assisted phase separation can modify lamella growth kinetic pathway, thereby assisting concentric ring pattern formation.  相似文献   

10.
The spatial distribution function and second moments of circular freely jointed chain are derived based on an analytical method. The circular Gauss chain, which is simple for long chains, is compared with the circular freely jointed chain, which is exact for short chains. It is shown that the Gauss chain model predicts a more compact configurational distribution than the exact freely jointed chain. The two chain models, however, become closer to each other when the chain length increases. It is found that the difference of the mean square radius of gyration calculated with these two chain models is a constant, independent of the chain length.  相似文献   

11.
The crystallization kinetics and morphologies of dilute binary blends of the monodisperse alkane n‐C122H246 in n‐C246H494 and vice versa have been investigated. With a molecular length ratio close to two, this pair of n‐alkanes does not produce permanent cilia when once‐folded C246H494 molecules cocrystallize with extended chains of C122H246. In this condition, the supplementary splaying of adjacent dominant lamellae and the consequently more spherulitic textures, which are present in previous blends for which a longer guest molecule gives permanent cilia, are absent, although other features of blend crystallization remain. Specifically, the isothermal radial growth rate is constant for cocrystallizing blends, although less than for their pure hosts, but becomes nonlinear with cellulation when C122H246 forms a segregated population within extended‐chain C246H494. Increased nucleation in the blends give smaller scale textures than for the host materials, but the presence of a second component reduces splaying and thereby disfavors spherulitic growth. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2874–2887, 2001  相似文献   

12.
Metal halide perovskites are emerging as new generation optoelectronic materials due to their high carrier mobility, long carrier diffusion length and large light absorption coefficient, which have broad applications in solar cell, light‐emitting diode, laser, photodetector and transistors. Perovskite single crystal is an ideal platform for discerning the intrinsic properties of these materials. In some cases, perovskite single crystals are better candidates to gain high performance optoelectronics. However, the growth of perovskite single crystals is time and cost consuming, which has an obvious disadvantage for device exploration. Therefore, fast growth technique is highly desirable in not only promoting the use of perovskites in commercial applications but also facilitating deep physical investigation of the materials. In this review, we summarize thoroughly the development of fast growth of the halide perovskites single crystal. Specifically, we highlight the progress of rapid growth techniques with emphasis on the optimization control.  相似文献   

13.
Spontaneous capillary flow (SCF) of a drop in a groove with an ideally sharp corner is possible when the Concus-Fin (CF) condition is fulfilled. However, since ideally sharp corners do not exist in reality, it is important to understand the effect of finite corner curvature on SCF. This effect is analytically studied for long drops in a V-shaped groove with a curved corner, leading to a generalization of the CF condition for such drops. The generalized condition implies that SCF depends on the geometry of the corner as well as on the dimensionless length of the drop, in addition to its dependence on the opening angle and contact angle that is covered by the CF condition. Specific calculations are presented for rounded corners. In addition, this effect is numerically calculated for short drops in V-shaped grooves with rounded corners, using the Surface Evolver software. The results of both types of calculations show that even a relatively small corner radius strongly affects the possibility of SCF: when the corner is not ideally sharp, SCF requires conditions that are more difficult to achieve than predicted by the CF condition; also, the spreading of the drop stops at a finite length and does not proceed indefinitely.  相似文献   

14.
Gold nanoparticles are very interesting because of their potential applications in microelectronics, optical devices, analytical detection schemes, and biomedicine. Though shape control has been achieved in several polar solvents, the capability to prepare organosols containing elongated gold nanoparticles has been very limited. In this work we report a novel, simplified method to produce long, thin gold nanowires in an organic solvent (oleylamine), which can be readily redispersed into nonpolar organic solvents. These wires have a characteristic flexible, hairy morphology arising from a small thickness (<2 nm) and an enormous length (up to several micrometers), with the possibility of adjusting the dimensions through modification of the growth conditions, in particular, the gold salt concentration. Despite their extreme aspect ratio, the wires are stable in solution for long periods of time but easily break when irradiated with high-energy electron beams during transmission electron microscopy.  相似文献   

15.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

16.
The critical draw ratio for initiation of intrinsic crazing in polycarbonate below the glass transition temperature has been determined after preorientation in the melt. Even when referred to the isotropic state, this ratio is found to depend not only on the extent of preorientation but also to be distinctly anisotropic. Under the assumption that intrinsic crazing occurs at the maximum extension of the entanglement network, these results are incompatible with a strain dependent but homogeneous breakdown of the entanglement network, but can be interpreted in terms of departure from affine transformation of the radius of gyration of an entangled length.  相似文献   

17.
A semicontinuum approach on the basis of an effective polarizability tensor per length and radius units is used to describe the dielectric response of a long single wall nanotube to the adsorption of an extended molecule. Changes in the permittivity ratio of the nanotube+molecule over the nanotube alone, which are directly connected to frequency shifts of the nanotube in a resonator configuration due to the presence of the molecule, provide a test of sensitivity of the system. The behavior of this ratio is analyzed for linear and circular geometries of the molecule, as a function of the tube characteristics (length and radius) and of the molecular size and polarizability distribution. Extension to three dimensional systems with a large set of polarizable centers is discussed in terms of self-polarization of the centers and morphology of the surface of the sensed system.  相似文献   

18.
19.
The depletion interactions of ellipsoidal colloidal particles in a solution of long polymer chains are analyzed. Of primary concern are the limiting cases in which the ellipsoid reduces to a cylinder of infinite length and finite radius and a "needle" of finite length and vanishing radius. Relations are obtained between the polymer effects induced by a needle that is much shorter than the polymer size and by a cylinder with radius much smaller than the polymer size. These imply exact quantitative results for the orientation-dependent depletion interaction between a short needle and a wall. Qualitative differences between the needle and thin disk are discussed.  相似文献   

20.
A multiscale approach for the simulation of physical properties of metals is suggested and discussed. Grain growth in metals involves interactions at three distinct scale levels: the atomic scale (length of crystal lattice spacing), microscale (grain length) and macroscale. A simulation scheme should include these three levels. The crystalline microstructure is simulated by the Monte Carlo method. The average grain radius is then used to determine the yield strength from the Hall-Petch relationship for large grains and the inverse Hall-Petch relationship for submicron-sized grains. The yield strength is then supplied to a continuum macroscale model. The normal grain growth, which has a theoretical solution for grain size as a function of time, is discussed in detail as a case study and conclusions are drawn with regard to more complex situations such as dynamic recrystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号