首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid nanocomposite films of poly(vinylsilsesquioxane) (PVSSQ) and polyimide (PI) (PI/PVSSQ) were prepared via sol‐gel process from triethoxyvinylsilane (VSSQ) and thermal imidization from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)‐p‐phenylene diamine (PDA) polyamic acid (BPDA‐PDA PAA). We investigated the microstructure; interfacial interaction; and optical, thermal, dielectric, and mechanical properties of the hybrid films. The phase morphologies and degree of surface roughness were evaluated by scanning electron microscope (SEM) and atomic force microscope (AFM), respectively. It was found that the surface topography was influenced by the composition of PVSSQ. Hydrogen bonding interactions between polyimide (PI) matrix and PVSSQ domains were proved with FT‐IR spectroscopy. The transparency of the hybrid films was found to be dependent on the PVSSQ content. Incorporating of the PVSSQ in the hybrid composites increased the glass transition temperature of PI. Dielectric constants of the hybrid films were in the range of 2.37–3.59. Properties of the PI films were also significantly enhanced by adding 5–30 wt % of PVSSQ. For comparison, we also prepared the hybrid composites of PI and mixtures of VSSQ and tetraethoxysilane (TEOS) and the PI/silica hybrid composite containing 30 wt % of silica obtained from TEOS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5189–5199, 2004  相似文献   

2.
A polyimide made from 4,4′-diaminodiphenyl ether (ODA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) was synthesized in polyphosphoric acid. Although the polymerization proceeded heterogeneously, a polyimide with an inherent viscosity of 0.90 was obtained, and a tough and flexible film was made from this polyimide. This polymerization was a one-step reaction including polycondensation and imidization; this was also confirmed by a model reaction between aniline and phthalic anhydride. Utilizing this polymerization method, 3,3′-dihydroxy-4,4′-diaminobiphenyl and 2 mol of 4-aminobenzoic acid were reacted in PPA, then BPDA was reacted to obtain an alternate copolymer containing imide and oxazole rings. This reaction gave a homogeneous solution of the poly(imide-benzoxazole). © 1993 John Wiley & Sons, Inc.  相似文献   

3.
In this article, the characterization of the microstructure and interface of hybrid composites is discussed. Poly(p‐phenylene biphenyltetracarboximide) was used as a matrix polymer and tetraethoxysilane was a precursor of silica. Polyimide/silica hybrid composites were prepared by sol–gel reaction and thermal imidization. Interfacial interaction as well as microstructure in polyimide/silica hybrid composites were well characterized by atomic force microscopy topology and small‐angle X‐ray scattering measurements. In addition, fluorescence spectroscopy was successfully applied in the studies to reveal the interfacial interaction in the hybrid systems. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, polyimide–silica (PI–silica) based hybrid coating compositions were prepared from tetraethoxysilane (TEOS), γ‐glycidyloxypropyl trimethoxy silane (GOTMS), and polyamic acid (PAA) via a combination of sol–gel and thermal imidization techniques. PAA was synthesized from 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 3,3'‐Diaminodiphenyl sulfone (DDS) in N‐Methyl‐2‐pyrrolidone (NMP). The silica content in the hybrid coatings was varied from 0 to 20 wt%. The structural characterization of the hybrid coatings was performed using FTIR and 29Si‐NMR spectroscopies. Results from both pendulum hardness and micro indentation test show that the hardness of hybrid coatings improves with the increase in silica content. The tensile tests also demonstrated that the mechanical properties at low silica content are rather striking. Their surface morphologies were characterized by scanning electron microscopy (SEM). SEM studies revealed that inorganic particles were distributed homogenously through the PI matrix. It was also found that, incorporation of the silica domains increased the thermal stability of the hybrid coatings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

6.
Multi‐walled carbon nanotube (MWCNT) modified by vinyltriethoxysilane (VTES) via free radical reaction has been prepared (poly (vinyltriethoxysilane) modified MWCNTs, PVTES‐MWCNT). Precursor of polyimide, polyamic acid has been synthesized by reacting 4,4′‐oxydianiline with 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride. PVTES‐MWCNT were then mixed with polyamic acid and heated to 300 °C to form CNT/polyimide composite. During the imidization processes, the silanes on CNT surface reacted with each other and may be connected together by covalent bond (Si? O? Si). The PVTES‐MWCNT was analyzed by Fourier transform infrared and X‐ray photoelectron spectroscopy. The PVTES‐MWCNT/polyimide composites were analyzed by CP/MAS solid state 29Si nuclear magnetic resonance (NMR) spectroscopy. Morphological properties of the PVTES‐MWCNT/polyimide composites were investigated by scanning electron microscope and transmission electron microscope. Electrical conductivity increased dramatically comparing to the unmodified MWCNT/polyimide composites. Mechanical properties of nanocomposite were enhanced significantly by PVTES‐MWCNT. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 803–816, 2008  相似文献   

7.
Summary: The novel hyperbranched polyimide - silica hybrid materials containing theoretically 16 wt% of an inorganic phase were prepared via a sol-gel process. An amine terminated polyimide precursor (hyperbranched polyamic acid) was prepared from commercially available monomers 4,4′,4″-triaminotriphenylmethane and 4,4′-oxydiphthalic anhydride in molar ratio 1:1. Tetramethoxysilane and/or 3-glycidoxypropyltrimethoxysilane (also used as a coupling agent) were used as silica precursors. During thermal exposition the polyimide precursor was transformed to hyperbranched polyimide and hydrolyzed alkoxy groups reacted mutually to form silica. The final products were self-standing films, whose structure was characterized by using IR and 13C and 29Si solid state NMR spectroscopy. The influence of the amount of silica and/or coupling agent on their structure and thermal properties was described.  相似文献   

8.
The crystalline morphology and structural development of aromatic polyimides during an optimum continuous thermal imidization procedure were examined by means of polarized optical microscopy and X‐ray diffraction. During thermal imidization, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride/1,3‐diaminobenzene polyimide samples formed complicated spherulites, which, in addition to zigzag Maltese crosses, also showed concentric extinction rings, which are characteristic of banded spherulites. The factors affecting the formation of banded spherulites were studied. The initial imidization conditions dramatically affected the formation of the banded spherulite morphology: slow heating (0.5 °C/min) or fast heating (20 °C/min) led to relatively small polyimide spherulites and less identifiable extinction rings. The morphological features were also affected by the molecular weight of the polyimide: higher molecular weight samples showed typical banded spherulites, whereas low‐molecular‐weight samples formed degenerated banded spherulites. In all the spherulites formed in 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride/1,3‐diaminobenzene polyimides, special zigzag Maltese crosses, instead of normal Maltese crosses, were observed. The relationship between the imidization procedure and the spherulite morphology formation was also studied. X‐ray and Fourier transform infrared together revealed that after several minutes of thermal treatment, the crystallization was nearly complete, with a 42.5% degree of crystallinity; meanwhile, only some poly(amic acid) converted to the corresponding polyimide, with a 27% degree of imidization. The crystalline morphology and structure formed in the initial stage of the imidization process were maintained during the following imidization processing at an elevated temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1997–2004, 2005  相似文献   

9.
Polyimide and hybrid polyimide‐siloxane were synthesized by polycondensation, imidization, and sol‐gel reaction. The polyimides were prepared from pyromellitic dianhydride (PMDA) and 4,4‐oxydianiline (ODA) in N‐methyl‐2‐pyrollidone (NMP). Trimethoxyvinyl silane (TMVS) was used as a source of silica. Their surface morphologies, structures and thermal performances were determined using scanning electron microscopy (SEM), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the silica particles were finely and rather homogeneously dispersed in polymers. The glass transition temperature (Tg) of hybrid membrane materials increased with the increasing silica content. TGA analysis showed that polyimides were thermally stable with silica. Modified polyimide‐siloxane films, thermal characteristics were found to be better than the polyimide films without silica. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Organosoluble polyimide/silica hybrid materials were prepared via the sol-gel process and their pervaporation properties were studied. The organosoluble polyimide (PI) was based on 4,4′-oxydiphthlic dianhydride (ODPA) and 4,4′-diamino-3,3′-dimethyldiphenylmethane (DMMDA). The surface chemical structure of polyimide/silica films was analyzed by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) and the results show that the completely hydrolysis of alkoxy groups of precursors and formation of the three-dimensional Si-O-Si network in the hybrid films. The morphology and the silica domain thus obtained were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The silica particle size in the hybrid is in the range of 40-100 nm for the hybrid films when the amount of silica is less than 20 wt%. The strength and the modulus of the hybrid films are improved and the mechanical properties were found to be strongly dependent on the density of the crosslink. The glass transition temperature (Tg) of the hybrid films was determined by dynamic mechanical analysis (DMA) and the value increased 15-20 °C as the silica content increased. Furthermore, the pervaporation performances of the prepared hybrid films were also investigated for the ethanol/water mixtures at different temperature.  相似文献   

11.
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004  相似文献   

12.
4,4′-Diaminodiphenylacetylene (p-intA) was reacted with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) in N-methyl-2-pyrrolidone (NMP) to give poly(amic acid) solution of moderate to high viscosity. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting unit. Polyimide having acetylene units that are linked meta to the aromatic connecting unit also was prepared utilizing 3,3′-diaminodiphenylacetylene (m-intA) for comparison. The crosslinking behavior of the acetylene units was observed with DSC. Exotherm due to the crosslinking of the para-linked acetylene units appeared at ca. 340 to 380°C depending on the structure of polyimide, whereas meta-linked acetylene units appeared at lower temperature as 340–350°C. After thermal treatment at high temperature such as 350 or 400°C, the amount of the exotherm became smaller and finally disappeared on DSC, confirming the progress of crosslinking. Dynamic mechanical properties of the polyimide films show that glass transition temperature increased with higher heat treatment, also confirming the progress of crosslinking. Tensile properties of the polyimide films showed that rigid polyimide films consisting of p-intA with BPDA or PMDA have considerably higher modulus than those consisting of m-intA. Cold-drawing of the poly(amic acid) followed by imidization gave much higher modulus in the case of rigid polyimide. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2395–2402, 1997  相似文献   

13.
In this study, a novel ion conductive polyimide (PI) nanofiber reinforced photocured hybrid electrolyte has been fabricated. Polyimide fibers were fabricated with the reaction between 4,4′‐oxydianiline (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) followed by electrospinning and thermal imidization methods. Then, PI electrospun fibers were dipped into hybrid resin formulation containing bisphenol A ethoxylate dimethacrylate (BEMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA) and 3‐(methacryloyloxy) propyltrimethoxysilane (MEMO) and then photocured to prepare PI nanofiber reinforced electrolyte membrane. Photocured membranes were soaked into lithium hexafluorophosphate (LiPF6) before measuring electrochemical stability and ionic conductivity of hybrid polyelectrolyte. The chemical structure and electrochemical performance of the electrolytes were examined by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and scanning electron microscopy (SEM) analysis. The incorporation of MEMO into organic matrix effectively increased the modulus from 2.83 to 5.91 MPa. The obtained results showed that a suitable electrolyte for Li‐ion batteries with high lithium uptake ratio, high conductivity (7.2 × 10?3 S cm?1) at ambient temperature and wide stability window above 5.5 V had been prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
以氨丙基封端的聚二甲基硅氧烷(PDMS)、 4,4'-二氨基二苯醚(4,4'-ODA)和3,4,3',4'-联苯四酸二酐(s-BPDA)为原料, 合成了聚酰胺酸硅氧烷嵌段共聚物. 将此嵌段共聚物和聚酰胺酸(s-BPDA/4,4'-ODA)共混, 通过控制制膜条件, 利用各组分在不同溶剂中的溶解度的差别, 使聚酰亚胺硅氧烷富集在膜的上表面. 因为两相在结构和性质上的相似性, 当聚酰胺酸硅氧烷和聚酰胺酸混合时, 具有很好的相容性, 消除了两相间的界面, 从而制备了优异的聚酰亚胺硅氧烷/聚酰亚胺两面异性的复合膜材料. 利用X射线光电子能谱(XPS)和水滴接触角对此复合膜进行了表征, 证明了此复合膜的两面异性, 并对此复合膜进行了热性能和机械性能研究, 发现此薄膜保持了聚酰亚胺优异的性能.  相似文献   

15.
以4,4′-二氨基二苯硫醚(SDA)和均苯四酸酐(PMDA)为原料,通过溶液缩聚法-热酰亚胺/化学酰亚胺化的方法制备了一种含硫醚结构均苯型聚酰亚胺.利用高级旋转流变仪建立了在线跟踪反应进程的方法,采用热失重分析仪研究反应条件对热酰亚胺化及化学酰亚胺化法的影响,这些方法的建立为进一步制备高性能的聚酰亚胺提供有效的实验手段.采用小角激光光散射法、红外光谱、元素分析、接触角仪、DSC等方法对聚合物的结构与性能进行表征.结果显示,硫醚结构的引入,可有效改善聚合物薄膜的表面性能,其与铜箔之间的粘附功明显大于传统聚酰亚胺,在无胶挠性线路板应用方面显示出较好的应用前景.所获聚合物的Mw为(6.7±1.6)×104,分解温度均高于560℃;DSC的结果显示所制备的两种酰亚胺化聚合物均具有较高的玻璃化转变温度,相比之下,化学酰亚胺化更有利于获得高酰亚胺化程度的聚合物,产物的玻璃化转变温度也更高.  相似文献   

16.
Summary: A copolycondesation-type poly (amic acid) (PAA) was synthesized using pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) as dianhydride monomers, and 4,4′-oxydianiline (ODA) as a diamine monomer under microwave irradiation in dimethylformamide (DMF). PAA was then converted into a polyimide (PI) by an imidization. The structure and performance of the polymer were characterized by Fourier-transform infrared (FT-IR) spectroscopy, Proton nuclear magnetic resonance (1H NMR) spectrometry, viscosity, X-ray diffraction (XRD), and thermogravimetric (TG) analyses. The results showed that under microwave irradiation, the intrinsic viscosity and the yield of PAA were increases, and the reaction time was shortened. The FT-IR spectra of the polymer revealed characteristic peaks for PI around 1778 and 1723 cm–1. TG curves indicated that the obtained PI began to lose weight at 535 °C, and its 10% thermal decomposition temperature under N2 was 587 °C.  相似文献   

17.
Polymer films of some polyimides containing pendant phthalonitrile groups were prepared by casting the corresponding poly(amic acid) solutions onto glass plates, followed by thermal imidization under controlled temperature conditions. The poly(amic acid)s were synthesized by polycondensation reaction of 4,4′‐diamino‐4″‐(3,4‐dicyanophenoxy)triphenylmethane, 1, or of different amounts of 1 and 4,4′‐bis(4‐aminophenoxybiphenyl), with two aromatic dianhydrides, 4,4′‐oxydiphthalic anhydride or benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride. Most of the films were flexible and tough and exhibited high thermal stability, having the initial decomposition temperature above 400 °C. Dynamic mechanical analysis and dielectric spectroscopy revealed the influence of phthalonitrile group content on the relaxation processes of polyimides. The values of the dielectric constant at 10 kHz and 20 °C were in the range of 3.25–3.61. The films exhibited nano‐actuation in the range of 240–480 nm, depending on the phthalonitrile group content, when an electric voltage was applied on their surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
聚酰胺酸结构及其亚胺化的红外光谱分析   总被引:2,自引:0,他引:2  
利用变温透射红外光谱方法,通过跟踪聚酰胺酸(PAA)的亚胺化过程,对由均苯四酸二酐和4,4′-二氨基二苯醚合成的聚酰胺酸及经过加热亚胺化后生成的聚酰亚胺(PI)的红外吸收光谱进行分析,对聚酰胺酸和聚酰亚胺的红外谱峰进行合理的归属,发现聚酰胺酸在亚胺化过程中有-COO-和-NH+2存在,-COO-中羰基的对称与反对称伸缩振动分别位于1607和1406 cm-1,NH+2的伸缩振动则有3200、3133、2938、2880、2820和2610 cm-1等多个精细谱带。 并根据对-COO-和-NH+2谱峰的归属,提出聚酰胺酸生成聚酰亚胺的机理为聚酰胺酸中COOH的H+转移到聚酰胺酸中的NH上,形成NH+2,然后脱水环化生成聚酰亚胺。  相似文献   

19.
A new kink diamine with trifluoromethyl group on either side, bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl]diphenylmethane (BTFAPDM) , was reacted with various aromatic dianhydrides to prepare polyimides via poly (amic acid) precursors followed by thermal or chemical imidization. Polyimides were prepared using 3,3′, 4,4′-biphenyltetracarboxylic dianhydride(1), 4,4′-oxydiphthalic anhydride(2), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (3), 4,4′-sulfonyldiphthalic anhydride(4), and 4,4′-hexafluoroisopropylidene-diphathalic anhydride(5). The fluoro-polyimides exhibited low dielectric constants between 2.46 and 2.98, light color, and excellent high solubility. They exhibited glass transition temperatures between 227 and 253°C, and possessed a coefficient of thermal expansion (CTE) of 60-88 ppm/°C. Polymers PI-2, PI-3, PI-4, PI-5 showed excellent solubility in the organic solvents: N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridkie and tetrahydrofuran (THF). Inherent viscosity of the polyimides were found to range between 0.58 and 0.72 dLg-1. Thermogravimetric analysis of the polyimides revealed a high thermal stability decomposition temperature in excess of 500°C in nitrogen. Temperature at 10 % weight loss was found to be in the range 506-563°C and 498-557°C in nitrogen and air, respectively. The polyimide films had a tensile strength in the range 75-87 MPa; tensile modulus, 1.5-2.2 GPa; and elongation at break, 6-7%.  相似文献   

20.
反相非水乳液法制备聚酰亚胺微球   总被引:1,自引:0,他引:1  
在N,N-二甲基甲酰胺(DMF)/Pluronic-F127、十二烷基苯磺酸钠(SDBS)/液体石蜡(LP)反相非水乳液体系中,以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为单体合成聚酰胺酸(PAA),采用吡啶/乙酸酐脱水剂,对PAA化学酰亚胺化,并进一步热酰亚胺化,制得PI耐热微球.产物通过红外、热重、扫描电镜表征.结果表明,较高的固含量和良好的乳液分散性有利于PI微球的形成;反相非水乳液体系稳定的配比条件是,VDMF∶VLP为1∶4,MF127∶MSDBS为3:2,乳化剂用量为9 wt%;在此配比条件下,当固含量为20%,热酰亚胺化温度不高于330℃时,可制得分散良好、球形规整、高热稳定性的PI微球,其粒径约为10μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号