首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
辐射交联制备改性CMC水凝胶的溶胀行为研究   总被引:10,自引:0,他引:10  
利用丙烯酰胺 (AAm)接枝改性纤维素 ,然后进行羧甲基化反应得到高取代度的丙烯酰胺 羧甲基纤维素钠 (AAm CMC Na) .对该材料进行γ射线辐照制备出新型改性CMC水凝胶 .研究了这种水凝胶的溶胀动力学、交联动力学以及温度、pH值和无机盐浓度对水凝胶溶胀行为的影响 ,并与CMC Na水凝胶进行了比较 .结果表明 ,该水凝胶和CMC Na水凝胶相比 ,优点在于辐照交联所用的剂量下降 ,而且所需的CMC浓度减少 .AAm CMC Na水凝胶的溶胀度随温度升高而增大 ,在pH为 6~ 8范围内达到最大值 ,并随无机盐浓度与吸收剂量增加而下降 ,表现出较好的温度敏感性和pH敏感性 ,可望作为吸水材料和水保持剂  相似文献   

2.
This paper concerns the rheological behavior of carboxymethylcelulloses(CMC) derived after one and two successive steps from different non-woodbleached cellulose pulps. CMC rheological characterization was achieved in0.1M NaCl solution, as a function of polymer concentration. Theevidence of a critical concentration (C* < 1 g/L) is discussedfromsteady shear and dynamic experiments. Rheological properties of the CMC werefound to depend on the cellulose source reactivity and on their degree ofsubstitution (DS). Higher molecular weight of initial cellulose was accompaniedby higher apparent intrinsic viscosity of the CMC produced. Depending on theCMCconcentration and on the degree of etherification, the system behaves as asolution or as a gel. In the case of abaca CMC sample, it is shown that afteronly one step of chemical modification and above a polymer concentration of20 g/L, the system behaves as a gel. The gel behavior was studied asafunction of temperature. In the temperature range from 25 to 45°C, the rheological behavior was found to remain almostconstant due to the existence of dispersed swollen aggregates. This unusualcharacteristic represents an advantage for applications such as oil recovery inthe petroleum industry, where viscosity of the recovered fluid should not diminishwith temperature.  相似文献   

3.
以粉碎的玉米秸秆(RCS)和羧甲基纤维素(CMC)为原料,制备了含水质量分数可达97.47%的玉米秸秆/羧甲基纤维素复配水凝胶(RCS/CMC)。考察了交联剂、CMC和RCS用量对RCS/CMC凝胶模量的影响,凝胶在缓冲溶液中的降解行为和土壤中的失重行为,以及凝胶对土壤持水量、玉米种子萌发的影响。结果表明,与对照实验比较,RCS/CMC凝胶可以提高土壤持水率1.00%~1.61%,在37 ℃缓冲溶液中用纤维素酶处理4 d后降解率约80%,土壤中25 d后失重约94%;用CMC/RCS凝胶处理玉米种子,虽然平均延长了种子萌发时间,但种子的萌发率较高。其中相对湿度18%、20%、23%、26%、28%和30%的萌发试验,由于水分胁迫对照实验种子不能萌发,而CMC/RCS凝胶处理的种子发芽率仍可达到97%。  相似文献   

4.
The carboxymethylation of bacterial cellulose (BC) was studied under typical heterogeneous reaction conditions. It was found that the BC possesses a significantly lower reactivity compared to wood cellulose converted under comparable conditions. Moreover, water-solubility of carboxymethyl cellulose (CMC) obtained from BC appears at rather high degree of substitution of about 1.5 although a nearly statistical functionalization pattern was analyzed by HPLC. Obviously, the nano-structure of BC is important for the reactivity and the properties of the synthesized CMC like water-solubility.  相似文献   

5.
Rheological properties of carboxymethyl cellulose (CMC) solutions   总被引:1,自引:0,他引:1  
In this study, we investigated the way of predicting two critical concentrations of sodium carboxymethyl cellulose (CMC) solutions using simple experimental procedures with a rotational rheometer. It was found that, above a critical shear rate, all CMC solutions (0.2 to 7 wt.%) exhibit shear-thinning behavior and the flow curves could be described by the Cross model. A first critical CMC concentration c*, transition to semidilute network solution, was determined using the following methods (1) study of the flow curve shapes, (2) Cross model parameters, (3) plot of the specific viscosity vs the overlap parameter, and (4) empirical structure–properties relationships. Furthermore, both creep and frequency-sweep measurements showed that the solutions behaved as viscoelastic materials above a second critical CMC concentration c** (transition to concentrated solution). The characterization of CMC solutions was completed with a time-dependent viscosity study that showed that the CMC solutions exhibited strong thixotropic behavior, especially at the highest CMC concentrations.  相似文献   

6.
The continuous Filature of bacterial cellulose has been achieved directly from culture medium using shallow culture pan newly designed. A remarkable progress of fiber properties was observed comparing with regenerated cellulosic filaments on the filament of bacterial cellulose dependently on the rinsing process with water or ethylene glycol. The progress of fiber properties was also shown on the filament of N-acetylglucosamine(GlcNAc) incorporated bacterial cellulose probably due to enforcement of fiber interactions. A copolymer of carboxymethylglucose (CM-Glc) and glucose has been achieved successfully to increase the adsorption capacity for lead ion comparing with original carboxymethyl cellulose (CMC).  相似文献   

7.
Novel superabsorbent hydrogels were prepared successfully from carboxymethylcellulose sodium (CMC) and cellulose in the NaOH/urea aqueous system by using epichlorohydrin (ECH) as cross-linker. The structure and morphology of the hydrogels were characterized by FT-IR spectroscope, thermogravimetric analysis and scanning electron microscope. The results revealed that the CMC contributed to the enhanced size of pore, whereas cellulose as a strong backbone in the hydrogel to support it for keeping its appearance. Their equilibrium swelling ratio in distilled water and different physiological fluids were evaluated, indicating the maximum swelling ratio in water reached an exciting level of 1000 as the hydrogels still keeping a steady appearance. Moreover, the hydrogels exhibited smart swelling and shrinking in NaCl or CaCl2 aqueous solution, as well as the release behavior of bovine serum albumin (BSA) that could be controlled by changing CMC content. The cellulose-based hydrogels are promising for the applications in the biomaterials area.  相似文献   

8.
Carboxymethyl cellulose (CMC)-rich cellulose sheets were prepared with a cationic retention aid, poly[N,N,N-trimethyl-N-(2-methacryloxyethyl)ammonium chloride] (PTMMAC), using a papermaking technique. When 5% PTMMAC and 5% CMC were added to cellulose slurries, approximately 94% of the polymers were retained in the sheets by formation of polyion complexes between the two polymers. When the PTMMAC/CMC/cellulose sheets were soaked in solutions consisting of ethanol, water and calcium chloride (EtOH/H2O/CaCl2) with a weight ratio of 75:24:1, almost all PTMMAC and CMC molecules remained in the sheets, forming the structures of PTMMAC-N+Cl and CMC-COOCa2+Cl without dissolution of these molecules in the soaking solution. Thus, PTMMAC, CMC and calcium contents in the sheets were able to be determined on the basis of these PTMMAC and CMC structures from analytical data such as nitrogen, calcium and chlorine contents. The trade-off properties between sufficient wet strength in use and water-disintegrability after use can be added to the PTMMAC/CMC/cellulose sheets by selecting weight ratios of the EtOH/H2O/CaCl2 solution used as the impregnation liquid.  相似文献   

9.
For the modification of medically useful biomaterials from bacterially synthesized cellulose, fleeces of Acetobacter xylinum have been produced in the presence of 0.5, 1.0, and 2.0% (m/v) carboxymethylcellulose (CMC), methylcellulose (MC), and poly(vinyl alcohol) (PVA), respectively, in the Hestrin-Schramm culture medium. The incorporation of the water-soluble polymers into cellulose and their influence on the structure, crystal modifications, and material properties are described. With IR and solid-state 13C NMR spectroscopy of the fleeces, the presence of the cellulose ethers and an increase in the amorphous parts of the cellulose modifications (NMR results) have been detected. The incorporation is represented by a higher product yield, too. As demonstrated by scanning electron microscopy, a porelike cellulose network structure forms in the presence of CMC and MC. This modified structure increases the water retention ability (expressed as the water content), the ion absorption capacity, and the remaining nitrogen-containing residues from the culture medium or bacteria cells. The water content of bacterial cellulose (BC) in the never dried state and the freeze-dried, reswollen state can be controlled by the CMC concentration in the culture solution. The freeze-dried, reswollen BC-CMC (2.0%) contains 96% water after centrifugation, whereas standard BC has only 73%. About 98% water is included in a BC-MC composite in the wet state, and about 93% is included in the reswollen state synthesized in the presence of 0.5, 1.0, or 2.0% MC. These biomaterial composites can be stored in the dried state and reswollen before use, reaching a higher water absorption than pure, never dried BC. The copper ion capacity of BC-CMC composites increases proportionally with the added amount of CMC. BC-CMC (0.5%) can absorb 3 times more copper ions than original BC. In the case of 0.5 and 1.0% PVA additions to the culture solution, this polymer cannot be detected in the cellulose fleeces after they are washed. Nevertheless the presence of PVA in the culture medium effects a decreased product yield, a retention of nitrogen-containing residues in the material during purification, a reduced water absorption ability, and a slightly higher copper ion capacity in comparison with original BC. The water content of freeze-dried, reswollen BC-PVA (0.5%) is only 62%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 463–470, 2004  相似文献   

10.
In this work, the carboxymethylation of cellulose in a new alkaline cellulose solvent, LiOH/urea aqueous solution, was investigated. Carboxymethyl cellulose (CMC) samples were characterized with FT-IR, NMR, HPLC, and viscosity measurements. Water-soluble CMC with DS = 0.36∼0.65 was prepared, from both Avicel cellulose and cotton linters in the LiOH/urea system. The total DS of CMC could be controlled by varying the molar ratio of reagents and the reaction temperature. The results from structure analysis by HPLC after complete depolymerization showed that the mole fractions of the different carboxymethylated repeating units as well as those of unmodified glucose follow a simple statistic pattern. A distribution of the carboxymethyl groups of the AGU was determined to be in the order O-6 > O-2 > O-3 position at the level.  相似文献   

11.
The adsorption of carboxymethyl cellulose (CMC), one of the most important cellulose derivatives, is crucial for many scientific investigations and industrial applications. Especially for surface modifications and functionalization of materials, the polymer is of interest. The adsorption properties of CMC are dependent not only on the solutions state, which can be influenced by the pH, temperature, and electrolyte concentration, but also on the chemical composition of the adsorbents. We therefore performed basic investigation studies on the interaction of CMC with a variety of polymer films. Thin films of cellulose, cellulose acetate, deacetylated cellulose acetate, polyethylene terephthalate, and cyclo olefin polymer were therefore prepared on sensors of a QCM-D (quartz crystal microbalance) and on silicon substrates. The films were characterized with respect to the thickness, wettability, and chemical composition. Subsequently, the interaction and deposition of CMC in a range of pH values without additional electrolyte were measured with the QCM-D method. A comparison of the QCM-D results showed that CMC is favorably deposited on pure cellulose films and deacetylated cellulose acetate at low pH values. Other hydrophilic surfaces such as silicon dioxide or polyvinyl alcohol coated surfaces did not adsorb CMC to a significant extent. Atomic force microcopy confirmed that the morphology of the adsorbed CMC layers differed depending on the substrate. On hydrophobic polymer films, CMC was deposited in the form of larger particles in lower amounts whereas hydrophilic cellulose substrates were to a high extent uniformly covered by adsorbed CMC. The chemical similarity of the CMC backbone seems to favor the irreversible adsorption of CMC when the molecule is almost uncharged at low pH values. A selectivity of the cellulose CMC interaction can therefore be assumed. All CMC treated polymer films exhibited an increased hydrophilicity, which confirmed their modification with the functional molecule.  相似文献   

12.

A unique natural polymer based colon specific drug carrier was prepared from carboxymethyl cellulose (CMC) and acrylic acid (AAc) in aqueous solution employing γ‐radiation induced copolymerization and crosslinking. The effect of preparation conditions such as the natural polymer content and irradiation dose on gelation process was investigated. The swelling behavior of the prepared hydrogels was characterized by investigating the time and pH dependent swelling of the (CMC/AAc) hydrogels of different CMC content. The effects of the hydrogel composition and pH of the swelling medium on the swelling indices were estimated. The results show that the increment in the CMC content in the feed solution enhances the gelation process. The results also show the dependence of the swelling indices on both hydrogel composition and pH value of the swelling medium. To evaluate the ability of the prepared hydrogel to be used as a colon‐specific drug carrier, the release profile of theophylline was studied as a function of time at pH 1 and pH 7.  相似文献   

13.
Sodium carboxymethyl cellulose (CMC) is a kind of degraded polymer under γ-irradiation. However, in this work, it has been found that CMC crosslinks partially to form hydrogel by radiation technique at more than 20% CMC aqueous solution. The gel fraction increases with the dose. The crosslinking reaction of CMC is promoted in the presence of N2 or N2O due to the increase of free radicals on CMC backbone, but gel fraction of CMC hydrogel is not high (<40%). Some important values related to this kind of new CMC hydrogel synthesized under different conditions, such as radiation yield of crosslinking G(x), gelation dose Rg, number average molecular weight of network Mc were calculated according to the Charlesby–Pinner equation. The results indicated that although crosslinked CMC hydrogel could be prepared by radiation method, the rate of radiation degradation of CMC was faster than that of radiation crosslinking due to the character of CMC itself. Swelling dynamics of CMC hydrogel and its swelling behavior at different conditions, such as acidic, basic, inorganic salt as well as temperature were also investigated. Strong acidity, strong basicity, small amount of inorganic salts and lower temperature can reduce swelling ratio.  相似文献   

14.
Adsorption of carboxymethyl cellulose (CMC) as a method to introduce charged (ionizable) groups onto cellulose cotton fibre surfaces was investigated. The method was based on application of a previously published method used for wood fibres. The amount of adsorbed ionizable groups was determined indirectly by analysis of CMC in solution by the phenol–sulphuric acid method and directly by conductometric titration of the fibres. Results from the two methods correlated well. The molecular weight and purity of the CMC had an influence on its adsorption onto cotton; high molecular weight CMC was preferentially adsorbed. The adsorbed charge correlated linearly with the amount of CMC adsorbed. The total charge of the cotton fibres could be increased by more than 50% by adsorption of CMC. It is expected that this modification procedure can be used in a wide spectrum of practical applications. Lidija Fras Zemljič and Karin Stana-Kleinschek are the members of the European Polysaccharide Network of Excellence (EPNOE).  相似文献   

15.
Effects of polymer additives on the formation of microfibrils of bacterial cellulose have been examined by transmission electron microscopy. Among additives with different degrees of polymerization (DP) or substitution (DS), carboxymethyl cellulose sodium salt (CMC) with DP = 80 and DS = 0.57 is the most effective in producing separate, smaller-size microfibrils. By increasing the concentration of this CMC from 0.1 to 1.5%, the percentage of microfibrils measuring 3–7 nm wide is increased and levels off at around 1.0%. Other polymer additives such as xyloglucan are less effective than CMC in producing microfibrils with smaller sizes and the resulting microfibrils still tend to aggregate. The number of charged substituents and the molecular weight seem to be important factors in the production of highly separate smaller-size microfibrils. The reduction in average microfibril size is well correlated to the decrease in mass fraction of cellulose I in bacterial cellulose crystals. On the basis of these results, the mechanism of the crystallization of celluloses I and I is discussed. The effect of colony types, smooth and rough, on the formation of microfibrils in the presence of CMC is also described.  相似文献   

16.
Many studies focus on bacterial cellulose (BC) functioning as multi-function bio-resource polymers, due to its fine fiber network, biocompatibility, high water holding capacity, and high mechanical strength. However, BC exhibits poor rehydration after drying due to its high crystallinity. This study added carboxymethylcellulose (CMC) to a BC producing culture medium, which interfered with the formation of BC structure in situ. This process created a modified BC called CBC, whose mechanical strength was found weaker than BC. Scanning electron microscope (SEM) images showed that the cellulose network in CBC became denser. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) analysis demonstrated that the addition of CMC reduced crystallinity. CBC also exhibited the highest rehydration ratio because of the lowest crystallinity at the 1.0% CMC addition level.  相似文献   

17.
羧基纤维素(钠盐,以下简称CMC)是一种重要的水溶性聚电解质。本文在传统溶媒法的基础上,采用乙醇作溶剂的两段加碱法新工艺制备CMC。研究表明,在低浴比(乙醇与纤维素质量比为2.04~2.45)条件下,采用新工艺制得的CMC具有较好的取代均一性和良好的性能:并用酶降解的方法,通过还原值测定,对CMC的取代基沿分子链的分布进行了表征;此外,对CMC的一些性能进行了测定,同时对其热稳定性进行了研究。  相似文献   

18.
The rheology of concentrated calcium carbonate suspensions is investigated with respect to addition of solution and dispersion polymers. System materials and composition are chosen to be similar, generically, to those in use in the coating of paper. Specifically, we investigate the particle volume fraction dependence of the relative viscosity, using both capillary and steady-shear concentric cylinder measurement methods to cover a broad range of concentrations. The results are interpreted in terms of semi-empirical models, such as the Krieger-Dougherty model. Oscillatory shear measurements are also employed to investigate the viscoelastic behavior of the concentrated suspensions. The measurements indicate that a common solution polymer thickener, carboxymethyl cellulose (CMC), causes depletion flocculation of calcium carbonate suspensions.  相似文献   

19.
Blend hydrogels based on the carboxymethyl cellulose (CMC) and carboxymethyl chitosan (CMCts) were prepared by γ-irradiation of a high concentrated CMC/CMCts aqueous solution. Properties of the hydrogels, such as gel fraction, swelling ratio, gel strength, and metal adsorption for Pb and Au were investigated. The gel fraction increased with increasing dose, while the swelling ratio decreased with increasing it. The obtained blend hydrogels had high adsorption performance which was controlled by adjusting the composition of CMC/CMCts.  相似文献   

20.
以羧甲基纤维素(CMC)为原料、3-氯-2-羟两基三甲基氯化铵(CHPAC)为季铵化剂,合成了一系列水溶性两性纤维素衍生物.研究了CMC季镇化反应的主要影响因素,发现不同的原料羧甲基取代度、反应用碱量、CHPAC用量及反应介质组成对CMC季铵取代度和CMC季铵化反应效率均有不同的影响,同时对原料CMC及其产物的IR、X光衍射和DSC谱图与溶液粘性行为进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号